
Duane Merrill, NVIDIA Research 

MERGE-BASED SpMV 
PERFECT WORKLOAD BALANCE. GUARANTEED. 



2  

SPARSE MATRIX-VECTOR MULTIPLICATION 
SpMV (Ax = y) 

1.0  -- 1.0  -- 

 --  --  --  -- 

 --  -- 1.0 1.0 

1.0 1.0 1.0 1.0 

1.0 

1.0 

1.0  

1.0 

* = 

2.0 

0.0 

2.0  

4.0 

sparse matrix  

A 
dense vector  

x 
dense vector  

y 



3  

SPARSE MATRIX-VECTOR MULTIPLICATION 
Lots of available parallelism 

1.0  -- 1.0  -- 

 --  --  --  -- 

 --  -- 1.0 1.0 

1.0 1.0 1.0 1.0 

sparse matrix  

A 

1.0 

1.0 

1.0  

1.0 

* = 

(1.0)(1.0) + (1.0)(1.0) 

0.0 

(1.0)(1.0) + (1.0)(1.0)  

(1.0)(1.0) + (1.0)(1.0) + (1.0)(1.0) +(1.0)(1.0) 

dense vector  

x 
dense vector  

y 



4  

PARALLEL DECOMPOSITION 



5  

COMPRESSED SPARSE ROW (CSR) FORMAT 
3-array representation  

1.0 1.0 1.0 1.0 1.0 1.0 1.0 values 1.0 

0 2 2 3 0 1 2 
column indices 3 

0 1 2 3 4 5 6 7 

1.0  -- 1.0  -- 

 --  --  --  -- 

 --  -- 1.0 1.0 

1.0 1.0 1.0 1.0 

A 

0 1 2 3 

0 

1 

2 

3 

0 2 2 4 8 row offsets 

0 1 2 3 4 



6  

1.0 1.0 1.0 1.0 1.0 1.0 1.0 values 1.0 

0 2 2 3 0 1 2 
column indices 3 

CSR PARALLEL DECOMPOSITION 
a) Row-based 

0 2 2 4 8 row offsets 

1.0  -- 1.0  -- 

 --  --  --  -- 

 --  -- 1.0 1.0 

1.0 1.0 1.0 1.0 

A 

p0 p1 p2 p3 



7  

1.0 1.0 1.0 1.0 1.0 1.0 1.0 values 1.0 

0 2 2 3 0 1 2 
column indices 3 

CSR PARALLEL DECOMPOSITION 
a) Row-based 

0 2 2 4 8 row offsets 

1.0  -- 1.0  -- 

 --  --  --  -- 

 --  -- 1.0 1.0 

1.0 1.0 1.0 1.0 

A 

p0 p1 p2 p3 

p0 p1 p2 p3 

imbalance! 



8  

CSR PARALLEL DECOMPOSITION 
b) Nonzero splitting 

1.0  -- 1.0  -- 

 --  --  --  -- 

 --  -- 1.0 1.0 

1.0 1.0 1.0 1.0 

A 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 values 1.0 

0 2 2 3 0 1 2 
column indices 3 

0 2 2 4 8 row offsets 

p0 p1 p2 p3 



9  

CSR PARALLEL DECOMPOSITION 
b) Nonzero splitting 

1.0  -- 1.0  -- 

 --  --  --  -- 

 --  -- 1.0 1.0 

1.0 1.0 1.0 1.0 

A 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 values 1.0 

0 2 2 3 0 1 2 
column indices 3 

0 2 2 4 8 row offsets 

p0 p1 p2 p3 

p0 p1 p2 p3 

imbalance! 



10  

CSR PARALLEL DECOMPOSITION 
c) Merge-based (logical) 

1.0  -- 1.0  -- 

 --  --  --  -- 

 --  -- 1.0 1.0 

1.0 1.0 1.0 1.0 

A 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 

0 2 2 4 row offsets 

values 1.0 

0 2 2 3 0 1 2 

column indices 

3 

p0 p1 p2 



11  

PERFORMANCE CONSISTENCY 

“Consistency is far better than rare 
moments of greatness” 

-Scott Ginsberg 



12  

Examples 
csrmv() with ~35M non-zeros (K40, fp64) 

thermomech_dK 
(temperature deformation) 

cnr-2000 
(Web connectivity) 

ASIC_320k  
(circuit simulation) 

12.4 GFLOPS 5.9 GFLOPS 0.12 GFLOPS 

cuSPARSE (row-based, vectorized parallel decomposition): 



13  

Examples 
csrmv() with ~35M non-zeros (K40, fp64) 

thermomech_dK 
(temperature deformation) 

cnr-2000 
(Web connectivity) 

ASIC_320k  
(circuit simulation) 

12.4 GFLOPS 5.9 GFLOPS 0.12 GFLOPS 

cuSPARSE (row-based, vectorized parallel decomposition): 

15.5 GFLOPS 16.7 GFLOPS 14.1 GFLOPS 

Merge-based: 



14  

PERFORMANCE (IN)CONSISTENCY 

Sources of data-dependent performance artifacts: 

• Contention 

• Workload imbalance 

Exacerbated on massively parallel GPUs 

>60 specialized GPU-specific SpMV algorithms and 

sparse matrix formats! 

Parallelization shouldn’t introduce artifacts in the performance landscape 



15  

SPMV PERFORMANCE LANDSCAPE 
The entire Florida Sparse Matrix Collection: 4.2K datasets (K40, fp64 CsrMV) 

0.001

0.01

0.1

1

10

100

1000

R
u

n
ti

m
e 

(m
s)

 

Matrices by size 

0.001

0.01

0.1

1

10

100

1000

R
u

n
ti

m
e 

(m
s)

 

Matrices by size 

cuSPARSE Merge-based 



16  

SPMV PERFORMANCE LANDSCAPE 
The entire Florida Sparse Matrix Collection: 4.2K datasets (K40, fp64 CsrMV) 

Highly correlated with  
problem size! 

0.001

0.01

0.1

1

10

100

1000

R
u

n
ti

m
e 

(m
s)

 

Matrices by size 

0.001

0.01

0.1

1

10

100

1000

R
u

n
ti

m
e 

(m
s)

 

Matrices by size 

cuSPARSE Merge-based 



17  

2D “MERGE PATH” DECOMPOSITION 

 
Narsingh Deo, Amit Jain, and Muralidhar Medidi. 1994. An optimal parallel algorithm for merging using multiselection. Inf. Process. Lett. 

50, 2 (April 1994), 81-87.  
 
Odeh, S. et al. 2012. Merge Path - Parallel Merging Made Simple. Proceedings of the 2012 IEEE 26th International Parallel and Distributed 

Processing Symposium Workshops & PhD Forum (Washington, DC, USA, 2012), 1611–1618 



18  18  

The 2D “merge-path” visualization 

a 

b 

c 

d 

e 

f 

g 

h 

c c e i 

start 

end 

The decision path runs from top-left to 
bottom-right: 

Moves right when consuming from listA  

Moves down when consuming from listB 

Each step produces an output  

Break ties by always preferring the 
element from listA 



19  19  

The 2D “merge-path” visualization 

a a 

b 

c 

d 

e 

f 

g 

h 

c c e i 

start 

end 

The decision path runs from top-left to 
bottom-right: 

Moves right when consuming from listA  

Moves down when consuming from listB 

Each step produces an output  

Break ties by always preferring the 
element from listA 



20  20  

The 2D “merge-path” visualization 

a 

b 

a 

b 

c 

d 

e 

f 

g 

h 

c c e i 

start 

end 

The decision path runs from top-left to 
bottom-right: 

Moves right when consuming from listA  

Moves down when consuming from listB 

Each step produces an output  

Break ties by always preferring the 
element from listA 



21  21  

The 2D “merge-path” visualization 

a 

b 

c 

a 

b 

c 

d 

e 

f 

g 

h 

c c e i 

start 

end 

The decision path runs from top-left to 
bottom-right: 

Moves right when consuming from listA  

Moves down when consuming from listB 

Each step produces an output  

Break ties by always preferring the 
element from listA 



22  22  

The 2D “merge-path” visualization 

a 

b 

c c 

a 

b 

c 

d 

e 

f 

g 

h 

c c e i 

start 

end 

The decision path runs from top-left to 
bottom-right: 

Moves right when consuming from listA  

Moves down when consuming from listB 

Each step produces an output  

Break ties by always preferring the 
element from listA 



23  23  

The 2D “merge-path” visualization 

a 

b 

c c c 

a 

b 

c 

d 

e 

f 

g 

h 

c c e i 

start 

end 

The decision path runs from top-left to 
bottom-right: 

Moves right when consuming from listA  

Moves down when consuming from listB 

Each step produces an output  

Break ties by always preferring the 
element from listA 



24  24  

The 2D “merge-path” visualization 

a 

b 

c c c 

d 

a 

b 

c 

d 

e 

f 

g 

h 

c c e i 

start 

end 

The decision path runs from top-left to 
bottom-right: 

Moves right when consuming from listA  

Moves down when consuming from listB 

Each step produces an output  

Break ties by always preferring the 
element from listA 



25  25  

The 2D “merge-path” visualization 

a 

b 

c c c 

d 

e 

a 

b 

c 

d 

e 

f 

g 

h 

c c e i 

start 

end 

The decision path runs from top-left to 
bottom-right: 

Moves right when consuming from listA  

Moves down when consuming from listB 

Each step produces an output  

Break ties by always preferring the 
element from listA 



26  26  

The 2D “merge-path” visualization 

a 

b 

c c c 

d 

e 
e 

a 

b 

c 

d 

e 

f 

g 

h 

c c e i 

start 

end 

The decision path runs from top-left to 
bottom-right: 

Moves right when consuming from listA  

Moves down when consuming from listB 

Each step produces an output  

Break ties by always preferring the 
element from listA 



27  27  

The 2D “merge-path” visualization 

a 

b 

c c c 

d 

e 

f 

e 

a 

b 

c 

d 

e 

f 

g 

h 

c c e i 

start 

end 

The decision path runs from top-left to 
bottom-right: 

Moves right when consuming from listA  

Moves down when consuming from listB 

Each step produces an output  

Break ties by always preferring the 
element from listA 



28  28  

The 2D “merge-path” visualization 

a 

b 

c c c 

d 

e 

f 

g 

e 

a 

b 

c 

d 

e 

f 

g 

h 

c c e i 

start 

end 

The decision path runs from top-left to 
bottom-right: 

Moves right when consuming from listA  

Moves down when consuming from listB 

Each step produces an output  

Break ties by always preferring the 
element from listA 



29  29  

The 2D “merge-path” visualization 

a 

b 

c c c 

d 

e 

f 

g 

h 

e 

a 

b 

c 

d 

e 

f 

g 

h 

c c e i 

start 

end 

The decision path runs from top-left to 
bottom-right: 

Moves right when consuming from listA  

Moves down when consuming from listB 

Each step produces an output  

Break ties by always preferring the 
element from listA 



30  30  

The 2D “merge-path” visualization 

a 

b 

c c c 

d 

e 

f 

g 

h 

i 

e 

a 

b 

c 

d 

e 

f 

g 

h 

c c e i 

The decision path runs from top-left to 
bottom-right: 

Moves right when consuming from listA  

Moves down when consuming from listB 

Each step produces an output  

Break ties by always preferring the 
element from listA 

start 

end 



31  31  

Partitioning the “merge path” 

a 

b 

c 

d 

e 

f 

g 

h 

c c e i 

p0 

p1 

p2 

1. Partition the grid into P equally-sized 
diagonal regions (one thread per region) 

2. Threads search along diagonals for 2D 
starting coordinates 

I.e., Find the first (i,j) where Xi is greater 
than all of the items consumed before Yj 

3. Threads run the serial merge algorithm 
from their starting points 



32  32  

Partitioning the “merge path” 

a 

b 

c 

d 

e 

f 

g 

h 

c c e i 

p0 

p1 

p2 

1. Partition the grid into P equally-sized 
diagonal regions (one thread per region) 

2. Threads search along diagonals for 2D 
starting coordinates 

I.e., Find the first (i,j) where Xi is greater 
than all of the items consumed before Yj 

3. Threads run the serial merge algorithm 
from their starting points 



33  33  

Partitioning the “merge path” 

a 

b 

c 

d 

e 

f 

g 

h 

c c e i 

p0 

p1 

p2 

1. Partition the grid into P equally-sized 
diagonal regions (one thread per region) 

2. Threads search along diagonals for 2D 
starting coordinates 

I.e., Find the first (i,j) where Xi is greater 
than all of the items consumed before Yj 

3. Threads run the serial merge algorithm 
from their starting points 



34  34  

Partitioning the “merge path” 

a 

b 

c 

d 

e 

f 

g 

h 

c c e i 

p0 

p1 

p2 

1. Partition the grid into P equally-sized 
diagonal regions (one thread per region) 

2. Threads search along diagonals for 2D 
starting coordinates 

I.e., Find the first (i,j) where Xi is greater 
than all of the items consumed before Yj 

3. Threads run the serial merge algorithm 
from their starting points 



35  35  

Partitioning the “merge path” 

a 

b 

c 

d 

e 

f 

g 

h 

c c e i 

p0 

p1 

p2 

1. Partition the grid into P equally-sized 
diagonal regions (one thread per region) 

2. Threads search along diagonals for 2D 
starting coordinates 

I.e., Find the first (i,j) where Xi is greater 
than all of the items consumed before Yj 

3. Threads run the serial merge algorithm 
from their starting points 



36  36  

Partitioning the “merge path” 

a 

b 

c 

d 

e 

f 

g 

h 

c c e i 

p0 p1 p2 

p0 

p1 

p2 

1. Partition the grid into P equally-sized 
diagonal regions (one thread per region) 

2. Threads search along diagonals for 2D 
starting coordinates 

I.e., Find the first (i,j) where Xi is greater 
than all of the items consumed before Yj 

3. Threads run the serial merge algorithm 
from their starting points 

Work is perfectly load-balanced! 



37  37  

Consuming the “merge path” 

a 

b 

c 

d 

e 

f 

g 

h 

c c e i 

p0 p1 p2 

p0 

p1 

p2 

1. Partition the grid into P equally-sized 
diagonal regions (one thread per region) 

2. Threads search along diagonals for 2D 
starting coordinates 

I.e., Find the first (i,j) where Xi is greater 
than all of the items consumed before Yj 

3. Threads run the serial merge algorithm 
from their starting points 



38  38  

Consuming the “merge path” 

a 

b 

c 

d 

e 

f 

g 

h 

c c e i 

p0 p1 p2 

p0 

p1 

p2 

a 

c 

f 

1. Partition the grid into P equally-sized 
diagonal regions (one thread per region) 

2. Threads search along diagonals for 2D 
starting coordinates 

I.e., Find the first (i,j) where Xi is greater 
than all of the items consumed before Yj 

3. Threads run the serial merge algorithm 
from their starting points 

Work is perfectly load-balanced! 



39  39  

Consuming the “merge path” 

a 

b 

c 

d 

e 

f 

g 

h 

c c e i 

p0 p1 p2 

p0 

p1 

p2 

a 

b 

c 

d 

f 

g 

1. Partition the grid into P equally-sized 
diagonal regions (one thread per region) 

2. Threads search along diagonals for 2D 
starting coordinates 

I.e., Find the first (i,j) where Xi is greater 
than all of the items consumed before Yj 

3. Threads run the serial merge algorithm 
from their starting points 

Work is perfectly load-balanced! 



40  40  

Consuming the “merge path” 

a 

b 

c 

d 

e 

f 

g 

h 

c c e i 

p0 p1 p2 

p0 

p1 

p2 

a 

b 

c c 

d 

f 

g 

h 

e 

1. Partition the grid into P equally-sized 
diagonal regions (one thread per region) 

2. Threads search along diagonals for 2D 
starting coordinates 

I.e., Find the first (i,j) where Xi is greater 
than all of the items consumed before Yj 

3. Threads run the serial merge algorithm 
from their starting points 

Work is perfectly load-balanced! 



41  41  

Consuming the “merge path” 

a 

b 

c 

d 

e 

f 

g 

h 

c c e i 

p0 p1 p2 

p0 

p1 

p2 

a 

b 

c c c 

d 

e 

f 

g 

h 

i 

e 

1. Partition the grid into P equally-sized 
diagonal regions (one thread per region) 

2. Threads search along diagonals for 2D 
starting coordinates 

I.e., Find the first (i,j) where Xi is greater 
than all of the items consumed before Yj 

3. Threads run the serial merge algorithm 
from their starting points 

Work is perfectly load-balanced! 



42  

MERGE-BASED CsrMV 



43  

MERGE-BASED CsrMV 

0 

1 

2 

3 

4 

5 

6 

7 

0 2 2 4 8 

row offsets 

n
o

n
ze

ro
 d

o
t-

p
ro

d
u

ct
 c

o
m

p
o

n
en

ts
 

va
lu

e 
in

d
ic

es
 (
ℕ

) 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1. Logically merge CSR row-offsets 
vs. ℕ (the nonzero indices) 

2. Partition the path into P regions 

3. Path processing: 

Accumulate values when 
moving down 

Flush and reset accumulator 
when right 

4. “Fixup” for partial-sums from 
rows that cross partitions 

1.0  -- 1.0  -- 

 --  --  --  -- 

 --  -- 1.0 1.0 

1.0 1.0 1.0 1.0 

1.0 

1.0 

1.0  

1.0 

* 



44  

MERGE-BASED CsrMV 

0 

1 

2 

3 

4 

5 

6 

7 

0 2 2 4 8 

Row offsets 

A
x 

 n
o

n
ze

ro
 d

o
t-

p
ro

d
u

ct
 c

o
m

p
o

n
en

ts
 

V
a

lu
e 

in
d

ic
es

 (
ℕ

) 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

p0 

p1 

p2 

1. Logically merge row-offsets vs. ℕ 
(the nonzero indices) 

2. Partition the path into P regions 

3. Path processing: 

Accumulate values when 
moving down 

Flush and reset accumulator 
when right 

4. “Fixup” for partial-sums from 
rows that cross partitions 

1.0  -- 1.0  -- 

 --  --  --  -- 

 --  -- 1.0 1.0 

1.0 1.0 1.0 1.0 

1.0 

1.0 

1.0  

1.0 

* 



45  

MERGE-BASED CsrMV 

0 

1 

2 

3 

4 

5 

6 

7 

0 2 2 4 8 

A
x 

 n
o

n
ze

ro
 d

o
t-

p
ro

d
u

ct
 c

o
m

p
o

n
en

ts
 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

p0 @(0,0) 

p1 @(2,2) 

p2 @(3,5) 

p0 p1 p2 

p0 

p1 

p2 

1. Logically merge row-offsets vs. ℕ 
(the nonzero indices) 

2. Partition the path into P regions 

3. Path processing: 

Accumulate values when 
moving down 

Flush and reset accumulator 
when right 

4. “Fixup” for partial-sums from 
rows that cross partitions 

1.0  -- 1.0  -- 

 --  --  --  -- 

 --  -- 1.0 1.0 

1.0 1.0 1.0 1.0 

1.0 

1.0 

1.0  

1.0 

* 



46  

MERGE-BASED CsrMV 

0 

1 

2 

3 

4 

5 

6 

7 

0 2 2 4 8 

Row offsets 

A
x 

 n
o

n
ze

ro
 d

o
t-

p
ro

d
u

ct
 c

o
m

p
o

n
en

ts
 

V
a

lu
e 

in
d

ic
es

 (
ℕ

) 2.0 0.0 

2.0 

4.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

0 

1 

2 3 4 

5 

6 7 

8 

9 

10 

11 12 

1. Logically merge row-offsets vs. ℕ 
(the nonzero indices) 

2. Partition the path into P regions 

3. Path processing: 

Accumulate nonzero values 
when moving down 

Flush and reset accumulator 
when right 

4. “Fixup” for partial-sums from 
rows that cross partitions 

1.0  -- 1.0  -- 

 --  --  --  -- 

 --  -- 1.0 1.0 

1.0 1.0 1.0 1.0 

1.0 

1.0 

1.0  

1.0 

* 



47  

MERGE-BASED CsrMV 

0 

1 

2 

3 

4 

5 

6 

7 

0 2 2 4 8 

Row offsets 

A
x 

 n
o

n
ze

ro
 d

o
t-

p
ro

d
u

ct
 c

o
m

p
o

n
en

ts
 

V
a

lu
e 

in
d

ic
es

 (
ℕ

) 2.0 0.0 

2.0 

4.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

0 

1 

2 3 4 

5 

6 7 

8 

9 

10 

11 12 

1. Logically merge row-offsets vs. ℕ 
(the nonzero indices) 

2. Partition the path into P regions 

3. Path processing: 

Accumulate values when 
moving down 

Flush and reset accumulator 
when right 

4. “Fixup” for partial-sums from 
rows that cross partitions 

1.0  -- 1.0  -- 

 --  --  --  -- 

 --  -- 1.0 1.0 

1.0 1.0 1.0 1.0 

1.0 

1.0 

1.0  

1.0 

* 



48  

 Much higher correlation of runtime to problem 

size (0.79 versus 0.31) 

 Much lower correlation of FLOPS to row-length 

variation (-0.02 versus -0.24) 

 Much lower correlation of FLOPS to row-length 

skew (-0.07 versus -0.23) 

 
0.001

0.01

0.1

1

10

100

1000

 R
u

n
n

in
g 

ti
m

e 
(m

s)
 

Matrices by size 

cuSPARSE

Merge-based

SPMV PERFORMANCE LANDSCAPE 
The entire Florida Sparse Matrix Collection: 4.2K datasets (K40, fp64 CsrMV) 



49  

QUESTIONS? 

 Further thanks and appreciation for support from DARPA PERFECT, 

Sean Baxter, Michael Garland 

Merrill, D. and Garland, M. 2015. Merge-based Parallel Sparse Matrix-Vector Multiplication using the 
CSR Storage Format. Tech. Rep. NVR-2015-002, NVIDIA Corp. 




