MERGE-BASED SpMV

PERFECT WORKLOAD BALANCE. GUARANTEED.

Duane Merrill, NVIDIA Research
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SPARSE MATRIX-VECTOR MULTIPLICATION
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COMPRESSED SPARSE ROW (CSR) FORMAT

3-array representation
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CSR PARALLEL DECOMPOSITION

a) Row-based
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CSR PARALLEL DECOMPOSITION
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CSR PARALLEL DECOMPOSITION

b) Nonzero splitting
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CSR PARALLEL DECOMPOSITION

b) Nonzero splitting
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CSR PARALLEL DECOMPOSITION

c) Merge-based (logical)
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PERFORMANCE CONSISTENCY

“Consistency is far better than rare
moments of greatness”
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Examples

csrmv() with ~35M non-zeros (K40, fp64)

thermomech_dK cnr-2000
;e

CUSPARSE (row-based, vectorized parallel decomposition):

ASIC_320k
T EPL- P IR

12.4 GFLOPS 5.9 GFLOPS

0.12 GFLOPS
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PERFORMANCE (IN)CONSISTENCY

Sources of data-dependent performance artifacts:

Contention

Workload imbalance
Exacerbated on massively parallel GPUs

specialized GPU-specific SpMV algorithms and
sparse matrix formats!
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SPMV PERFORMANCE LANDSCAPE

The entire Florida Sparse Matrix Collection: 4.2K datasets (K40, fp64 CsrMV)
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SPMV PERFORMANCE LANDSCAPE

The entire Florida Sparse Matrix Collection: 4.2K datasets (K40, fp64 CsrMV)
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2D “MERGE PATH” DECOMPOSITION

Narsingh Deo, Amit Jain, and Muralidhar Medidi. 1994. An optimal parallel algorithm for merging using multiselection. Inf. Process. Lett.
50, 2 (April 1994), 81-87.

Odeh, S. et al. 2012. Merge Path - Parallel Merging Made Simple. Proceedings of the 2012 IEEE 26th International Parallel and Distributed
Processing Symposium Workshops & PhD Forum (Washington, DC, USA, 2012), 1611-1618
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The 2D “merge-path” visualization
.
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The decision path runs from top-left to
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Each step produces an output

Break ties by always preferring the
element from list,
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The 2D “merge-path” visualization
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Partitioning the “merge path”

Partition the grid into P equally-sized
diagonal regions (one thread per region)
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Partitioning the “merge path”

Threads search along diagonals for 2D
starting coordinates

l.e., Find the first (i,5) where X; is greater
than all of the items consumed before YJ
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Partitioning the “merge path”
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° o Threads run the serial merge algorithm
from their starting points
P2 Work is perfectly load-balanced!
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Consuming the “merge path”

| Po | P1 | P2

Po Threads search along diagonals for 2D
starting coordinates

l.e., Find the first (i,5) where X; is greater
P, than all of the items consumed before Y;

P
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Consuming the “merge path”

P+

o Threads run the serial merge algorithm
from their starting points

P2 Work is perfectly load-balanced!
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Consuming the “merge path”
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Consuming the “merge path”
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Consuming the “merge path”
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MERGE-BASED CsrMV
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MERGE-BASED CsrMV ===
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MERGE-BASED CsrMV
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MERGE-BASED CsrMV ===
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MERGE-BASED CsrMV ===
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SPMV PERFORMANCE LANDSCAPE

The entire Florida Sparse Matrix Collection: 4.2K datasets (K40, fp64 CsrMV)
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Matrices by size

Much higher correlation of runtime to problem
size (0.79 versus 0.31)

Much lower correlation of FLOPS to row-length

variation (-0.02 versus -0.24)

Much lower correlation of FLOPS to row-length
skew (-0.07 versus -0.23)
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QUESTIONS?

Merrill, D. and Garland, M. 2015. Merge-based Parallel Sparse Matrix-Vector Multiplication using the
CSR Storage Format. Tech. Rep. NVR-2015-002, NVIDIA Corp.

Further thanks and appreciation for support from DARPA PERFECT,

Sean Baxter, Michael Garland
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