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MERGE-BASED SpMV 
PERFECT WORKLOAD BALANCE. GUARANTEED. 
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SPARSE MATRIX-VECTOR MULTIPLICATION 
SpMV (Ax = y) 
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SPARSE MATRIX-VECTOR MULTIPLICATION 
Lots of available parallelism 
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PARALLEL DECOMPOSITION 
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COMPRESSED SPARSE ROW (CSR) FORMAT 
3-array representation  
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1.0 1.0 1.0 1.0 1.0 1.0 1.0 values 1.0 

0 2 2 3 0 1 2 
column indices 3 

CSR PARALLEL DECOMPOSITION 
a) Row-based 
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CSR PARALLEL DECOMPOSITION 
a) Row-based 

0 2 2 4 8 row offsets 
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imbalance! 
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CSR PARALLEL DECOMPOSITION 
b) Nonzero splitting 
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CSR PARALLEL DECOMPOSITION 
b) Nonzero splitting 
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CSR PARALLEL DECOMPOSITION 
c) Merge-based (logical) 
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PERFORMANCE CONSISTENCY 

“Consistency is far better than rare 
moments of greatness” 

-Scott Ginsberg 
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Examples 
csrmv() with ~35M non-zeros (K40, fp64) 

thermomech_dK 
(temperature deformation) 

cnr-2000 
(Web connectivity) 

ASIC_320k  
(circuit simulation) 

12.4 GFLOPS 5.9 GFLOPS 0.12 GFLOPS 

cuSPARSE (row-based, vectorized parallel decomposition): 
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Examples 
csrmv() with ~35M non-zeros (K40, fp64) 

thermomech_dK 
(temperature deformation) 

cnr-2000 
(Web connectivity) 

ASIC_320k  
(circuit simulation) 

12.4 GFLOPS 5.9 GFLOPS 0.12 GFLOPS 

cuSPARSE (row-based, vectorized parallel decomposition): 

15.5 GFLOPS 16.7 GFLOPS 14.1 GFLOPS 

Merge-based: 
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PERFORMANCE (IN)CONSISTENCY 

Sources of data-dependent performance artifacts: 

• Contention 

• Workload imbalance 

Exacerbated on massively parallel GPUs 

>60 specialized GPU-specific SpMV algorithms and 

sparse matrix formats! 

Parallelization shouldn’t introduce artifacts in the performance landscape 
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SPMV PERFORMANCE LANDSCAPE 
The entire Florida Sparse Matrix Collection: 4.2K datasets (K40, fp64 CsrMV) 
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cuSPARSE Merge-based 
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SPMV PERFORMANCE LANDSCAPE 
The entire Florida Sparse Matrix Collection: 4.2K datasets (K40, fp64 CsrMV) 

Highly correlated with  
problem size! 

0.001

0.01

0.1

1

10

100

1000

R
u

n
ti

m
e 

(m
s)

 

Matrices by size 

0.001

0.01

0.1

1

10

100

1000

R
u

n
ti

m
e 

(m
s)

 

Matrices by size 

cuSPARSE Merge-based 



17  

2D “MERGE PATH” DECOMPOSITION 

 
Narsingh Deo, Amit Jain, and Muralidhar Medidi. 1994. An optimal parallel algorithm for merging using multiselection. Inf. Process. Lett. 

50, 2 (April 1994), 81-87.  
 
Odeh, S. et al. 2012. Merge Path - Parallel Merging Made Simple. Proceedings of the 2012 IEEE 26th International Parallel and Distributed 

Processing Symposium Workshops & PhD Forum (Washington, DC, USA, 2012), 1611–1618 
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The 2D “merge-path” visualization 
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The decision path runs from top-left to 
bottom-right: 

Moves right when consuming from listA  

Moves down when consuming from listB 

Each step produces an output  

Break ties by always preferring the 
element from listA 



19  19  

The 2D “merge-path” visualization 
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The 2D “merge-path” visualization 
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The 2D “merge-path” visualization 
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The 2D “merge-path” visualization 
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The 2D “merge-path” visualization 
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The 2D “merge-path” visualization 
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The 2D “merge-path” visualization 
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The 2D “merge-path” visualization 
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The 2D “merge-path” visualization 
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The 2D “merge-path” visualization 
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The 2D “merge-path” visualization 
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The 2D “merge-path” visualization 
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Partitioning the “merge path” 
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1. Partition the grid into P equally-sized 
diagonal regions (one thread per region) 

2. Threads search along diagonals for 2D 
starting coordinates 

I.e., Find the first (i,j) where Xi is greater 
than all of the items consumed before Yj 

3. Threads run the serial merge algorithm 
from their starting points 
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Partitioning the “merge path” 
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Partitioning the “merge path” 
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Partitioning the “merge path” 
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Partitioning the “merge path” 
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Partitioning the “merge path” 
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Work is perfectly load-balanced! 
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Consuming the “merge path” 
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Consuming the “merge path” 
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Consuming the “merge path” 
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Consuming the “merge path” 

a 

b 

c 

d 

e 

f 

g 

h 

c c e i 

p0 p1 p2 

p0 

p1 

p2 

a 

b 

c c 

d 

f 

g 

h 

e 

1. Partition the grid into P equally-sized 
diagonal regions (one thread per region) 

2. Threads search along diagonals for 2D 
starting coordinates 

I.e., Find the first (i,j) where Xi is greater 
than all of the items consumed before Yj 

3. Threads run the serial merge algorithm 
from their starting points 

Work is perfectly load-balanced! 



41  41  

Consuming the “merge path” 

a 

b 

c 

d 

e 

f 

g 

h 

c c e i 

p0 p1 p2 

p0 

p1 

p2 

a 

b 

c c c 

d 

e 

f 

g 

h 

i 

e 

1. Partition the grid into P equally-sized 
diagonal regions (one thread per region) 

2. Threads search along diagonals for 2D 
starting coordinates 

I.e., Find the first (i,j) where Xi is greater 
than all of the items consumed before Yj 

3. Threads run the serial merge algorithm 
from their starting points 
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MERGE-BASED CsrMV 
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MERGE-BASED CsrMV 
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MERGE-BASED CsrMV 
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MERGE-BASED CsrMV 
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MERGE-BASED CsrMV 
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MERGE-BASED CsrMV 
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 Much higher correlation of runtime to problem 

size (0.79 versus 0.31) 

 Much lower correlation of FLOPS to row-length 

variation (-0.02 versus -0.24) 

 Much lower correlation of FLOPS to row-length 

skew (-0.07 versus -0.23) 
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cuSPARSE
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The entire Florida Sparse Matrix Collection: 4.2K datasets (K40, fp64 CsrMV) 
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QUESTIONS? 

 Further thanks and appreciation for support from DARPA PERFECT, 

Sean Baxter, Michael Garland 

Merrill, D. and Garland, M. 2015. Merge-based Parallel Sparse Matrix-Vector Multiplication using the 
CSR Storage Format. Tech. Rep. NVR-2015-002, NVIDIA Corp. 




