MERGE-BASED SpMV

PERFECT WORKLOAD BALANCE. GUARANTEED.

Duane Merrill, NVIDIA Research
<A NVIDIA.

-- 1.0 1.0

1.01.0 1.0 1.0

sparse

matrix

A

SPARSE MATRIX-VECTOR MULTIPLICATION

IIIIIIII

SPARSE MATRIX-VECTOR MULTIPLICATION

1.0 1.0 1.0 1.0

sparse matrix

A

L e e

o o o o

dense vector

X

(1.0) (1.0)

|

(1.0) (1.0) + (1.0)(1.0)
0.0

(1.0) + (1.0)

(1.0) (1.0) + (1.0)(1.0)

dense vector

y

+(1.0) (1.0)

3 NVIDIA.

PARALLEL DECOMPOSITION

IIIIIIII

COMPRESSED SPARSE ROW (CSR) FORMAT

3-array representation

1.0 --1.0 --

-- ——=—1.0 1.0
1.0 1.0 1.0 1.0

A

values

column indices

VAR 1.0

0 1

row offsets

1.

0

2 | s |

4 5

6

“ 2
0 1

7

5 ©ANVIDIA.

CSR PARALLEL DECOMPOSITION

a) Row-based

1.0 --1.0 --

-- ——=—1.0 1.0
1.0 1.0 1.0 1.0

A

values

1.0 | 1.0 [vasRmim)

column indices » ‘ 3 ‘

row offsets n 2 2

6 <ANVIDIA.

CSR PARALLEL DECOMPOSITION

a) Row-based

1

.0

-- 1.0 1.0

1.0 1.0 1.0 1.0

A

values

column indices _i 5 ‘ s
i
nl [|

imbalance!

row offsets n 2

7 <ANVIDIA.

CSR PARALLEL DECOMPOSITION

b) Nonzero splitting

1.0 --1.0 --

-- ——=—1.0 1.0
1.0 1.0 1.0 1.0

A

values

|
I
I
1.0 1.0 1.0
I
column indices _ 5 ‘ s
[| [|

row offsets

Kl -

8 <ANVIDIA.

CSR PARALLEL DECOMPOSITION

b) Nonzero splitting

1

.0

-- 1.0 1.0

1.0 1.0 1.0 1.0

A

values

|
I
I
1.0 1.0 1.0
I
column indices _ 5 ‘ s
[| [|

row offsets

imbalance!

Kl -

9 <ANVIDIA.

CSR PARALLEL DECOMPOSITION

c) Merge-based (logical)

1.0 --1.0 --

-- -——-— 1.0 1.0
1.0 1.0 1.0 1.0

A

values

row offsets

column indices

1.0

1.0

10 <4 NVIDIA.

PERFORMANCE CONSISTENCY

“Consistency is far better than rare
moments of greatness”

11 <4 NVIDIA.

Examples

csrmv() with ~35M non-zeros (K40, fp64)

thermomech_dK cnr-2000
;e

CUSPARSE (row-based, vectorized parallel decomposition):

ASIC_320k
T EPL- P IR

12.4 GFLOPS 5.9 GFLOPS

0.12 GFLOPS

Examples

csrmv() with ~35M non-zeros (K40, fp64)

thermomech_dK cnr-2000

CUSPARSE (row-based, vectorized parallel decomposition):

C e L 11
AR o Y
B3 LG 4B ANIRY

ASIC_320k

12.4 GFLOPS 5.9 GFLOPS

Merge-based:

0.12 GFLOPS

15.5 GFLOPS 16.7 GFLOPS

14.1 GFLOPS

PERFORMANCE (IN)CONSISTENCY

Sources of data-dependent performance artifacts:

Contention

Workload imbalance
Exacerbated on massively parallel GPUs

specialized GPU-specific SpMV algorithms and
sparse matrix formats!

14 NVIDIA.

SPMV PERFORMANCE LANDSCAPE

The entire Florida Sparse Matrix Collection: 4.2K datasets (K40, fp64 CsrMV)

1000 -+
100 - - %
. 08
rd
% 0ol o
10 -:-,'5
=z
£
©
€ 1
=
c
=}
I~
0.1 - . .:
o.mﬂt.m
0.001
I I I R I AR U RS ARIC I RN R AN I)
RV - A R AR O N SO AR S ASRE U O
R %00\‘,”@'9"&»?’%\’%“,\,@,&««9@ &

Matrices by size

CuUSPARSE

Runtime (ms)

1000 ~

100 +

10 4

0.1 -

0.01

-ae

0.001

VY AYNS A0 D0 A DD AN DS A
SHER RN R S

Matrices by size

Merge-based

SPMV PERFORMANCE LANDSCAPE

The entire Florida Sparse Matrix Collection: 4.2K datasets (K40, fp64 CsrMV)

1000 ~

100 -+

Runtime (ms)

0.001

© A D> A DA >N A D
O o)’\ q,;8) 'e") Q \’}) '3§') o)’\ L) (,"o Qq;\ q°)
NN K

VAo D o D
OSSO s

Matrices by size

CuUSPARSE

.| Highly correlated with 3
problem size! .

Runtime (ms)

0.001
R g R ICARRC S LI R A - ¢
LR L - A SR A NI A R O SR SN S SRS AN
YOG N DA TSN (& P&
Matrices by size

Merge-based

2D “MERGE PATH” DECOMPOSITION

Narsingh Deo, Amit Jain, and Muralidhar Medidi. 1994. An optimal parallel algorithm for merging using multiselection. Inf. Process. Lett.
50, 2 (April 1994), 81-87.

Odeh, S. et al. 2012. Merge Path - Parallel Merging Made Simple. Proceedings of the 2012 IEEE 26th International Parallel and Distributed
Processing Symposium Workshops & PhD Forum (Washington, DC, USA, 2012), 1611-1618

17 <ANVIDIA.

The 2D “merge-path” visualization
.

start ‘

The decision path runs from top-left to
bottom-right:

Moves right when consuming from /ist,
Moves down when consuming from /ist,
Each step produces an output

Break ties by always preferring the
element from list,

end 18 SANVIDIA.

The 2D “merge-path” visualization
-

The decision path runs from top-left to

. star .
bottom-right: o

Moves right when consuming from /ist,
Moves down when consuming from /ist,
Each step produces an output

Break ties by always preferring the
element from list,

end 19 SANVIDIA.

The 2D “merge-path” visualization
-

The decision path runs from top-left to

. star .
bottom-right: o

Moves right when consuming from /ist, b
Moves down when consuming from /ist,
Each step produces an output

Break ties by always preferring the
element from list,

end 20 SANVIDIA.

The 2D “merge-path” visualization
.

The decision path runs from top-left to
bottom-right:

start
Moves right when consuming from list, b
Moves down when consuming from /ist,

Each step produces an output

Break ties by always preferring the
element from list,

end 21 SANVIDIA.

The 2D “merge-path” visualization

The decision path runs from top-left to
bottom-right:

start

Moves right when consuming from list, b

Moves down when consuming from /ist,
Each step produces an output

Break ties by always preferring the
element from list,

end 22 SANVIDIA.

The 2D “merge-path” visualization

The decision path runs from top-left to
bottom-right:

start

Moves right when consuming from list, b

Moves down when consuming from /ist, ‘ ¢ l ¢
Each step produces an output

Break ties by always preferring the
element from list,

end 23 SNVIDIA.

The 2D “merge-path” visualization

The decision path runs from top-left to
bottom-right:

start

Moves right when consuming from list, b

Moves down when consuming from /ist,

Each step produces an output

Break ties by always preferring the
element from list,

end 24 SANVIDIA.

The 2D “merge-path” visualization

The decision path runs from top-left to
bottom-right:

start

Moves right when consuming from list, b

Moves down when consuming from /ist,

Each step produces an output

Break ties by always preferring the
element from list,

end 25 SANVIDIA.

The 2D “merge-path” visualization

The decision path runs from top-left to
bottom-right:

start

Moves right when consuming from list, b
Moves down when consuming from /ist, ‘ i
Each step produces an output d
€ e

Break ties by always preferring the —
element from list, .

g

h

end 26 SANVIDIA,

The 2D “merge-path” visualization

The decision path runs from top-left to
bottom-right:

start

Moves right when consuming from list, b

Moves down when consuming from /ist,

Each step produces an output

Break ties by always preferring the
element from list,

end 27 SANVIDIA.

The 2D “merge-path” visualization

The decision path runs from top-left to
bottom-right:

Moves right when consuming from /ist,
Moves down when consuming from /ist,
Each step produces an output

Break ties by always preferring the
element from list,

start

end

28 SANVIDIA,

The 2D “merge-path” visualization

The decision path runs from top-left to
bottom-right:

Moves right when consuming from /ist,
Moves down when consuming from /ist,
Each step produces an output

Break ties by always preferring the
element from list,

start

end

29 SANVIDIA,

The 2D “merge-path” visualization

The decision path runs from top-left to
bottom-right:

start

Moves right when consuming from list, b

Moves down when consuming from /ist,

Each step produces an output
€ e
Break ties by always preferring the
element from list, f
S
h
.ﬁ «

end 30 SANVIDIA

Partitioning the “merge path”

Partition the grid into P equally-sized
diagonal regions (one thread per region)

31 SANVIDIA,

Partitioning the “merge path”

Threads search along diagonals for 2D
starting coordinates

l.e., Find the first (i,5) where X; is greater
than all of the items consumed before YJ

32 SANVIDIA,

Partitioning the “merge path”

Threads search along diagonals for 2D
starting coordinates

l.e., Find the first (i,5) where X; is greater
than all of the items consumed before YJ

33 &ANVIDIA,

Partitioning the “merge path”

Threads search along diagonals for 2D
starting coordinates

l.e., Find the first (i,5) where X; is greater
than all of the items consumed before YJ

34 SANVIDIA,

Partitioning the “merge path”

Threads search along diagonals for 2D
starting coordinates

l.e., Find the first (i,5) where X; is greater
than all of the items consumed before YJ

35 SANVIDIA,

Partitioning the “merge path”

| | |
| Po | Pt | P

‘ —
P+ j
° o Threads run the serial merge algorithm
from their starting points
P2 Work is perfectly load-balanced!

36 SANVIDIA

Consuming the “merge path”

| Po | P1 | P2

Po Threads search along diagonals for 2D
starting coordinates

l.e., Find the first (i,5) where X; is greater
P, than all of the items consumed before Y;

P

37 SANVIDIA,

Consuming the “merge path”

P+

o Threads run the serial merge algorithm
from their starting points

P2 Work is perfectly load-balanced!

38 ANVIDIA,

Consuming the “merge path”

| Po I ' P1 | P2

d P+
; — - Threads run the serial merge algorithm
f from their starting points
g P2 Work is perfectly load-balanced!

39 SANVIDIA,

Consuming the “merge path”

| Po I ' P1 | P2

b
. — —
¢ c
d P+
—
e
o] S Threads run the serial merge algorithm
f from their starting points
g P2 Work is perfectly load-balanced!
| h

40 <SANVIDIA,

Consuming the “merge path”

| Po I ' P1 | P2

d P+
€ e
; — - Threads run the serial merge algorithm
f from their starting points
g P2 Work is perfectly load-balanced!
h
_'.

41 SINVIDIA,

MERGE-BASED CsrMV

IIIIIIIII

MERGE-BASED CsrMV ===

== == 1,0 1.0

[S S
o o o o

1.0 1.0 1.0 1.0

row offsets

Logically merge CSR row-offsets
vs. N (the nonzero indices) - 2 | 2 8

1.0

value indices (N)

nonzero dot-product components

43 <ANVIDIA.

1.0 -- 1.0 -- 1.0
MERGE-BASED CsrMV IRt
1.0 1.0 1.0 1.0 1.0
Row offsets
Partition the path into P regions 0
Po ”
1 IS
5}
<
o
2 1.0 | £
Z S
%))
o 3 % 1.0 _§
S S
4) 4D
S o
S E
5 N
<
Qo
<
6
p> é
7

44 <SANVIDIA.

MERGE-BASED CsrMV

Partition the path into P regions

J \

AN

1,0 == 1,0

== == 1,0

1.0 1.0 1.0 1.0

1.0

1.0

1.0

Ax nonzero dot-product components

[S S
o o o o

45 <ANVIDIA.

MERGE-BASED CsrMV ===

== == 1,0 1.0

[S S
o o o o

1.0 1.0 1.0 1.0

Row offsets

2
. <
Path processing: G 2
. | 2 1.0 §

2.0
Accumulate nonzero values O 3 S
when moving down A 318 1.0 | S
E S
Flush and reset accumulator | A § L
when right 3 S
5 3
Qo
<
>
<

(- ()

46 <ANVIDIA.

A
S

MERGE-BASED CsrMV ===

== == 1,0 1.0

[S S
o o o o

1.0 1.0 1.0 1.0

Row offsets

=0
—(Dm(=(e)

(- ()

2.0

1.0

Value indices (N)

Ax nonzero dot-product components

“Fixup” for partial-sums from
rows that cross partitions

47 <ANVIDIA.

by
S

SPMV PERFORMANCE LANDSCAPE

The entire Florida Sparse Matrix Collection: 4.2K datasets (K40, fp64 CsrMV)

Running time (ms)

1000 -

100 -

10 -

-+ cuSPARSE
Merge-based !
A
R -
l‘.‘.e

[]
3 * o
.
Gedat o
g

v

® 8 ® O S D E P DA AR D DD D P W P WD D D D
R RN IR LR LU LRI R A L S R P R LR R I g
AT A oS

Matrices by size

Much higher correlation of runtime to problem
size (0.79 versus 0.31)

Much lower correlation of FLOPS to row-length

variation (-0.02 versus -0.24)

Much lower correlation of FLOPS to row-length
skew (-0.07 versus -0.23)

48 <ANVIDIA.

QUESTIONS?

Merrill, D. and Garland, M. 2015. Merge-based Parallel Sparse Matrix-Vector Multiplication using the
CSR Storage Format. Tech. Rep. NVR-2015-002, NVIDIA Corp.

Further thanks and appreciation for support from DARPA PERFECT,

Sean Baxter, Michael Garland
49 <ANVIDIA.

AANVIDIA.

.

« Los Alamos

NATIONAL LABORATORY
T.194

