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The Goal: 
 

Sustained ExaFLOPS on 
Problems of Interest 

 
... 
 

at reasonable cost 



3  Source: C Moore, Data Processing in ExaScale-ClassComputer Systems, Salishan, April 2011 

The End  
of Historic 

Scaling 
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2017 

CORAL 
150-300PF (5-10x) 

11MW (1.1x) 
14-27 GFLOPs/W (7-14x) 

Lots of Threads 

20PF 
18,000 GPUs 

10MW 
2 GFLOPs/W 
~107 Threads 

You Are Here 

1,000PF (50x) 
72,000HCNs (4x) 

20MW (2x) 
50 GFLOPs/W (25x) 

~1010 Threads (1000x) 2013 

2023 
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How do we get to 50GFlops/Watt? 
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Start with an energy-efficient architecture 
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CPU 
130 pJ/flop (Vector SP) 

Optimized for Latency 
Deep Cache Hierarchy 

Haswell 
22 nm 

GPU 
30 pJ/flop (SP) 
Optimized for Throughput 

Explicit Management 
of On-chip Memory 

Maxwell 
28 nm 
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CPU 
2 nJ/flop (Scalar SP) 

Optimized for Latency 
Deep Cache Hierarchy 

Haswell 
22 nm 

GPU 
30 pJ/flop (SP) 
Optimized for Throughput 

Explicit Management 
of On-chip Memory 

Maxwell 
28 nm 
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HOW IS POWER SPENT IN A CPU? 

In-order Embedded OOO Hi-perf 

Clock + Control Logic 
24% 

Data Supply 
17% 

Instruction Supply 
42% 

Register File 
11% 

ALU   6% 
Clock + Pins 

45% 

ALU 
4% 

Fetch 
11% 

Rename 
10% 

Issue 
11% 

RF 
14% 

Data 
Supply 
5% 

Dally [2008] (Embedded in-order CPU) Natarajan [2003] (Alpha 21264) 

20pJ FP op è1nJ instruction 



11  

Latency-Optimized Core 
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PCs 

Throughput-Optimized 
Core (TOC) 
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How do we continue to scale energy efficiency 

 

...in a world where technology scaling is diminished? 



13  

 

Do Less Work 
 

Eliminate waste and redundancy 
 

Move fewer bits 
 

Move data more efficiently 
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DO LESS WORK 
Mixed Precision Arithmetic 

1 11 52 
double-precision 

1 8 23 
single-precision 

1 5 10 
half-precision 4x throughput 

4x bandwidth 
4x capacity 

< ¼ energy/op 

5x precision bits 
60x range 

Only use as much precision as you need 
 
Exploit mix of representations 
 
Scaled arithmetic 
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ELIMINATE WASTE 
Temporal SIMT 

32-wide datapath 

time 

1 
cy

c 

1 warp instruction = 32 threads 

thread 
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 thread 
31 
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Pure Temporal SIMT 
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ELIMINATE WASTE 
Temporal SIMT 

32-wide 
(41%) 

4-wide 
(65%) 

1-wide 
(100%) 

Increase efficiency on divergent code 
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ELIMINATE WASTE 
Variable Warp Sizing 

Small warps 

+ Improved perf for divergent code 

+ Better SIMD utilization 

Emulate wide warp HW 

+ Wider converged execution 

+ Memory locality/convergence 

+ Reduced power (frontend) 

 

 

scheduler 

Time Gang schedule warps with same PC 

Schedule several warps, different PCs scheduler 

Rogers [ISCA 2015] 
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ELIMINATE REDUNDANCY 
Scalarization 

Lee [CGO 2013] 

LD R2ç<A> 
LD R3çR2, 1 
ADD R4çR3, 2 

LD R2ç<A> 
LD R3çR2, 2 
ADD R4çR3, 2 

LD R2ç<A> 
LD R3çR2,3 
ADD R4çR3, 2 

LD R2ç<A> 
LD R3çR2, 4 
ADD R4çR3, 2 

scalar op 
vector load 
vector op 

SIMT Execution 

ADD R4çSR3, 2 ADD R4çSR3, 2 ADD R4çSR3, 2 ADD R4çSR3, 2 

LD SR2ç<A> 
VLD SR3çSR2, 1 

Scalarized SIMT Execution 
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MOVE FEWER BITS 

Small multi-ported register file 

Capture locality of commonly used operands 

Can reduce RF energy by 50% 

 

 

Register File Cache (RFC) 

S 
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X 

Operand Routing 

Operand Buffering 

Main Register File 
4x128-bit Banks (1R1W) 

RFC 4x32-bit 
(3R1W) Banks 

ALU 

Gebhart [ISCA 2011] 
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MOVE DATA MORE EFFICIENTLY 
Toggle-aware Compression 

0x00003A00 0x8001D000 0x00003A01 0x8001D008 ...

4�bytes
128Ͳbyte�Uncompressed�Cache�Line

4�bytes

8Ͳbyte�flit

0x00003A00 0x8001D000

0x00003A01 0x8001D008

XOR

Flit�0

Flit�1

=
0000...00100...00100... #�Toggles�=�2

0x5�0x3A00�0x7�0x8001D000

128Ͳbyte�FPCͲcompressed�Cache�Line

8Ͳbyte�flit

5�3A00�7�80001D000�5�1D

XOR

Flit�0

Flit�1

=

001001111...110100011000 #�Toggles�=�31

0x5�0x3A01�0x7�0x8001D008 0x5�...

1�01�7�80001D008�5�3A02�1

Metadata

Compression can increase power 
consumption 

 
Goal: reduce bus toggling 

Pekhimenko [HPCA 2016] 
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MINIMIZE DATA MOVEMENT 

Reduces distance 

Increases bandwidth 

Offers opportunity to 
optimize signaling circuits 

Packaging 

High-bandwidth on-package memory 
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MINIMIZE DATA MOVEMENT 
Heterogeneous DRAM Architectures 

~200 GB/s 

High BW 
Memory TOCs LOCs 

~2TB/s ~200 GB/s 

High 
Capacity 
Memory 

~200 GB/s 

High BW 
Memory TOCs 

~2TB/s 

High 
Capacity 
Memory 

Challenges 
 Exploiting all available bandwidth 
 Maximizing locality for frequently accessed data 
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MINIMIZE DATA MOVEMENT 
Software-managed Caching with On-Package Memory 
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Strategies 
 Aggressively migrate pages upon First-Touch to GDDR memory 
 Pre-fetch neighbors of touched pages to reduce TLB shootdowns 
 Throttle page migrations when nearing peak BW 

 

Competitive with 
manual memory copy 
 
Close to “perfect” 
prefetch 

Agarwal  [HPCA 2015] 
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MINIMIZE DATA MOVEMENT 

Tag overhead: hundreds of MB 

 Alloy tag and data in same DRAM row (Micro12) 

Cache organization: optimize for bandwidth 

 Direct mapped, consecutive sets in same row 

 

Results 

 Fine-grained transfers good for lower locality apps 

 Can eliminate some page migration overheads 

Hardware Managed DRAM Cache 
RO

W
 BU

FFER 

Tag Set Index Offset 

16-byte DRAM bus 

29-bits 5-bits 
RO

W
 BU

FFER 

1G
B D

RAM
 

(512M lines) 

tag* 

(2-byte) 
data 

(64-byte) 

Only medium 
of accessing 
DRAM array 
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LOOMING MEMORY POWER CRISIS 

Column Power 

120W 

160W 
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SUMMARY 

 

Do Less Work 
 

Eliminate waste and redundancy 
 

Move fewer bits 
 

Move data more efficiently 




