ENERGY-EFFICIENT ARCHITECTURES FOR EXASCALE SYSTEMS

Dr. Stephen W. Keckler Senior Director of Architecture Research, NVIDIA

© NVIDIA.

The Goal:

Sustained ExaFLOPS on Problems of Interest

• • •

at reasonable cost

The End of Historic Scaling

Source: C Moore, Data Processing in ExaScale-ClassComputer Systems, Salishan, April 2011

HETEROGENEOUS NODE

5 🥺 NVIDIA.

How do we get to 50GFlops/Watt?

Start with an energy-efficient architecture

Haswell 22 nm

Maxwell 28 nm

8 🧆 NVIDIA.

Haswell 22 nm

Maxwell 28 nm

9 🕺 NVIDIA,

11 💿 nvidia.

How do we continue to scale energy efficiency

... in a world where technology scaling is diminished?

Do Less Work

Eliminate waste and redundancy

Move fewer bits

Move data more efficiently

DO LESS WORK Mixed Precision Arithmetic

14 🞯 nvidia.

ELIMINATE WASTE

Temporal SIMT

ELIMINATE WASTE

Variable Warp Sizing

ELIMINATE REDUNDANCY

Scalarization

MOVE FEWER BITS

Register File Cache (RFC)

Small multi-ported register file

Capture locality of commonly used operands

Can reduce RF energy by 50%

Gebhart [ISCA 2011]

MOVE DATA MORE EFFICIENTLY

Toggle-aware Compression

Packaging

Reduces distance

Increases bandwidth

Offers opportunity to optimize signaling circuits

High-bandwidth on-package memory

Heterogeneous DRAM Architectures

Challenges

Exploiting all available bandwidth Maximizing locality for frequently accessed data

Software-managed Caching with On-Package Memory

Strategies

Aggressively migrate pages upon First-Touch to GDDR memory Pre-fetch neighbors of touched pages to reduce TLB shootdowns Throttle page migrations when nearing peak BW

Hardware Managed DRAM Cache

Tag overhead: hundreds of MB

Alloy tag and data in same DRAM row (Micro12)

Cache organization: optimize for bandwidth

Direct mapped, consecutive sets in same row

Results

Fine-grained transfers good for lower locality apps

Can eliminate some page migration overheads

LOOMING MEMORY POWER CRISIS

SUMMARY

Do Less Work

Eliminate waste and redundancy

Move fewer bits

Move data more efficiently

