
Dr. Stephen W. Keckler
Senior Director of Architecture Research, NVIDIA

ENERGY-EFFICIENT ARCHITECTURES FOR
EXASCALE SYSTEMS

2

The Goal:

Sustained ExaFLOPS on
Problems of Interest

...

at reasonable cost

3 Source: C Moore, Data Processing in ExaScale-ClassComputer Systems, Salishan, April 2011

The End
of Historic

Scaling

4

2017

CORAL
150-300PF (5-10x)

11MW (1.1x)
14-27 GFLOPs/W (7-14x)

Lots of Threads

20PF
18,000 GPUs

10MW
2 GFLOPs/W
~107 Threads

You Are Here

1,000PF (50x)
72,000HCNs (4x)

20MW (2x)
50 GFLOPs/W (25x)

~1010 Threads (1000x) 2013

2023

5

HETEROGENEOUS NODE
System Interconnect

NoC

MC NIC

LO
C

 0

LO
C

 7

DRAM
Stacks

TO
C

1

TO
C

2

TO
C

3

TOC0

La
ne

15

La
ne

0

TPC0

L20
1MB

L21
1MB

L22
1MB

L23
1MB

TP
C

12
7

N
VL

in
k

NVLink NoC

MC
DRAM
DIMMs LLC

NV
RAM

6

How do we get to 50GFlops/Watt?

7

Start with an energy-efficient architecture

8

CPU
130 pJ/flop (Vector SP)

Optimized for Latency
Deep Cache Hierarchy

Haswell
22 nm

GPU
30 pJ/flop (SP)
Optimized for Throughput

Explicit Management
of On-chip Memory

Maxwell
28 nm

9

CPU
2 nJ/flop (Scalar SP)

Optimized for Latency
Deep Cache Hierarchy

Haswell
22 nm

GPU
30 pJ/flop (SP)
Optimized for Throughput

Explicit Management
of On-chip Memory

Maxwell
28 nm

10

HOW IS POWER SPENT IN A CPU?

In-order Embedded OOO Hi-perf

Clock + Control Logic
24%

Data Supply
17%

Instruction Supply
42%

Register File
11%

ALU 6%
Clock + Pins

45%

ALU
4%

Fetch
11%

Rename
10%

Issue
11%

RF
14%

Data
Supply
5%

Dally [2008] (Embedded in-order CPU) Natarajan [2003] (Alpha 21264)

20pJ FP op è1nJ instruction

11

Latency-Optimized Core
(LOC)

PC

PC

Branch
Predict

I$

Register
Rename

ALU 1 ALU 2 ALU 4 ALU 3

Reorder Buffer

Instruction
Window

Register File

ALU 1 ALU 2 ALU 4 ALU 3

I$

Select

Register File

PCs

Throughput-Optimized
Core (TOC)

12

How do we continue to scale energy efficiency

...in a world where technology scaling is diminished?

13

Do Less Work

Eliminate waste and redundancy

Move fewer bits

Move data more efficiently

14

DO LESS WORK
Mixed Precision Arithmetic

1 11 52
double-precision

1 8 23
single-precision

1 5 10
half-precision 4x throughput

4x bandwidth
4x capacity

< ¼ energy/op

5x precision bits
60x range

Only use as much precision as you need

Exploit mix of representations

Scaled arithmetic

15

ELIMINATE WASTE
Temporal SIMT

32-wide datapath

time

1
cy

c

1 warp instruction = 32 threads

thread
0

 thread
31

ld
ld
ml ml ml ml
ad ad ad ad
st st st st

ml ml ml ml
ad ad ad ad
st st st st

ml ml ml ml
ad ad ad ad
st st st st

ml ml ml ml
ad ad ad ad
st st st st

ml ml ml ml
ad ad ad ad
st st st st

ml ml ml ml
ad ad ad ad
st st st st

ml ml ml ml
ad ad ad ad
st st st st

ml ml ml ml
ad ad ad ad
st st st st

Spatial SIMT (current GPUs)
1-wide

time

1
cy

c

ld
ld
ld
ld
ld
ld
ld

 0
(threads)

 1
 2
 3
 4
 5
 6
 7 ld

ld
ld

 8
 9

ld 10

Pure Temporal SIMT

16

ELIMINATE WASTE
Temporal SIMT

32-wide
(41%)

4-wide
(65%)

1-wide
(100%)

Increase efficiency on divergent code

17

ELIMINATE WASTE
Variable Warp Sizing

Small warps

+ Improved perf for divergent code

+ Better SIMD utilization

Emulate wide warp HW

+ Wider converged execution

+ Memory locality/convergence

+ Reduced power (frontend)

scheduler

Time Gang schedule warps with same PC

Schedule several warps, different PCs scheduler

Rogers [ISCA 2015]

18

ELIMINATE REDUNDANCY
Scalarization

Lee [CGO 2013]

LD R2ç<A>
LD R3çR2, 1
ADD R4çR3, 2

LD R2ç<A>
LD R3çR2, 2
ADD R4çR3, 2

LD R2ç<A>
LD R3çR2,3
ADD R4çR3, 2

LD R2ç<A>
LD R3çR2, 4
ADD R4çR3, 2

scalar op
vector load
vector op

SIMT Execution

ADD R4çSR3, 2 ADD R4çSR3, 2 ADD R4çSR3, 2 ADD R4çSR3, 2

LD SR2ç<A>
VLD SR3çSR2, 1

Scalarized SIMT Execution

19

MOVE FEWER BITS

Small multi-ported register file

Capture locality of commonly used operands

Can reduce RF energy by 50%

Register File Cache (RFC)

S
F
U

M
E
M

T
E
X

Operand Routing

Operand Buffering

Main Register File
4x128-bit Banks (1R1W)

RFC 4x32-bit
(3R1W) Banks

ALU

Gebhart [ISCA 2011]

20

MOVE DATA MORE EFFICIENTLY
Toggle-aware Compression

0x00003A00 0x8001D000 0x00003A01 0x8001D008 ...

4�bytes
128Ͳbyte�Uncompressed�Cache�Line

4�bytes

8Ͳbyte�flit

0x00003A00 0x8001D000

0x00003A01 0x8001D008

XOR

Flit�0

Flit�1

=
0000...00100...00100... #�Toggles�=�2

0x5�0x3A00�0x7�0x8001D000

128Ͳbyte�FPCͲcompressed�Cache�Line

8Ͳbyte�flit

5�3A00�7�80001D000�5�1D

XOR

Flit�0

Flit�1

=

001001111...110100011000 #�Toggles�=�31

0x5�0x3A01�0x7�0x8001D008 0x5�...

1�01�7�80001D008�5�3A02�1

Metadata

Compression can increase power
consumption

Goal: reduce bus toggling

Pekhimenko [HPCA 2016]

21

MINIMIZE DATA MOVEMENT

Reduces distance

Increases bandwidth

Offers opportunity to
optimize signaling circuits

Packaging

High-bandwidth on-package memory

22

MINIMIZE DATA MOVEMENT
Heterogeneous DRAM Architectures

~200 GB/s

High BW
Memory TOCs LOCs

~2TB/s ~200 GB/s

High
Capacity
Memory

~200 GB/s

High BW
Memory TOCs

~2TB/s

High
Capacity
Memory

Challenges
 Exploiting all available bandwidth
 Maximizing locality for frequently accessed data

23

MINIMIZE DATA MOVEMENT
Software-managed Caching with On-Package Memory

0"

1"

2"

3"

4"

5"

6"

ba
ckp

rop
(

bfs
(

cn
s(

co
md
(

km
ea
ns
(

mi
nif
e(

mu
mm

er(

ne
ed
le(

pa
thfi

nd
er(

sra
d_
v1
(

xsb
en
ch
(

ge
o:m

ea
n(

Th
ro
ug
hp

ut
(R
el
a=

ve
(

to
(N
o(
M
ig
ra
=o

n(

Legacy"CUDA" First8Touch"+"Range"Exp"+"BW"Balancing" ORACLE"

Strategies
 Aggressively migrate pages upon First-Touch to GDDR memory
 Pre-fetch neighbors of touched pages to reduce TLB shootdowns
 Throttle page migrations when nearing peak BW

Competitive with
manual memory copy

Close to “perfect”
prefetch

Agarwal [HPCA 2015]

24

MINIMIZE DATA MOVEMENT

Tag overhead: hundreds of MB

 Alloy tag and data in same DRAM row (Micro12)

Cache organization: optimize for bandwidth

 Direct mapped, consecutive sets in same row

Results

 Fine-grained transfers good for lower locality apps

 Can eliminate some page migration overheads

Hardware Managed DRAM Cache
RO

W
 BU

FFER

Tag Set Index Offset

16-byte DRAM bus

29-bits 5-bits
RO

W
 BU

FFER

1G
B D

RAM

(512M lines)

tag*

(2-byte)
data

(64-byte)

Only medium
of accessing
DRAM array

25

LOOMING MEMORY POWER CRISIS

Column Power

120W

160W

26

SUMMARY

Do Less Work

Eliminate waste and redundancy

Move fewer bits

Move data more efficiently

