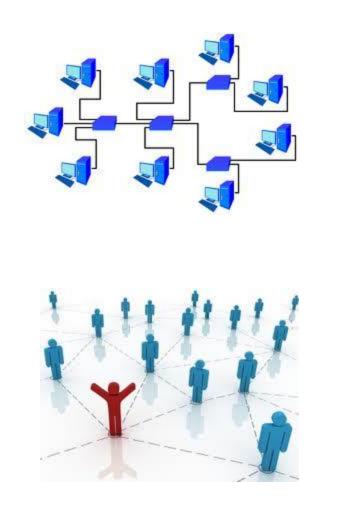


Fast Execution of Simultaneous Breadth-First Searches on Sparse Graphs

Adam McLaughlin and David A. Bader



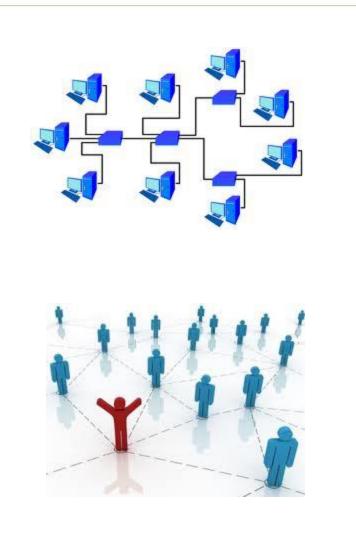
Georgia Tech College of Computing **Computational Science and Engineering**

Applications of interest...

- Computational biology
- Social network analysis
- Urban planning
- Epidemiology
- Hardware verification

College of

Computing


Georgia

Tech

Applications of interest...

- Computational biology
- Social network analysis
- Urban planning
- Epidemiology
- Hardware verification
- Common denominator: Graph Analysis

College of Computing

Georgia

Tech

"Traditional" HPC is Expensive

- Tianhe-2: 17.8 MW
- Titan: 8.2 MW

- Distributed systems are often overkill
 - Too much time and energy wasted on expensive communication
 - Shared memory is large enough (~1 TB)
- Leverage the high memory bandwidth of

NVIDIA GPUs

SC15 NVIDIA GPU Technology Theater, Austin, TX, USA

Georgia

Tech

GPUs are Challenging to Program

- Months of domain expert programmer time required to develop/optimize code
- Efforts are typically limited to a single problem, architecture, or data set
 - Little code reuse
 - Limited number of libraries
 - Opaque, yet drastic, performance consequences

Georgia

What makes GPU Computing so Difficult?

- Parallel programming challenges
 Deadlock, synchronization, race conditions
- Architectural/Ecosystem challenges
 - Programmer managed shared memory
 - Deep knowledge of the underlying architecture required
- Challenges unique to graph analysis
 - Data dependent memory access patterns

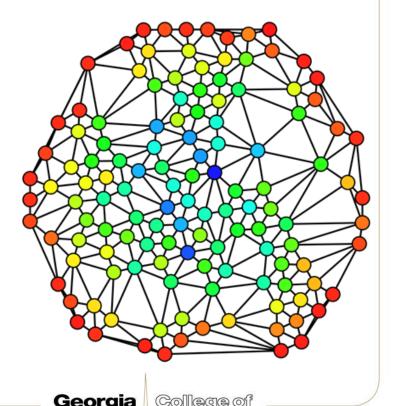
Solution: Abstraction

- Abstract details of parallel programming from end users
- Let social scientists, analysts, etc. focus on gathering insights
- Let domain experts focus on parallel programming, architectural details
 - Encourage modularity and code reuse

F 11

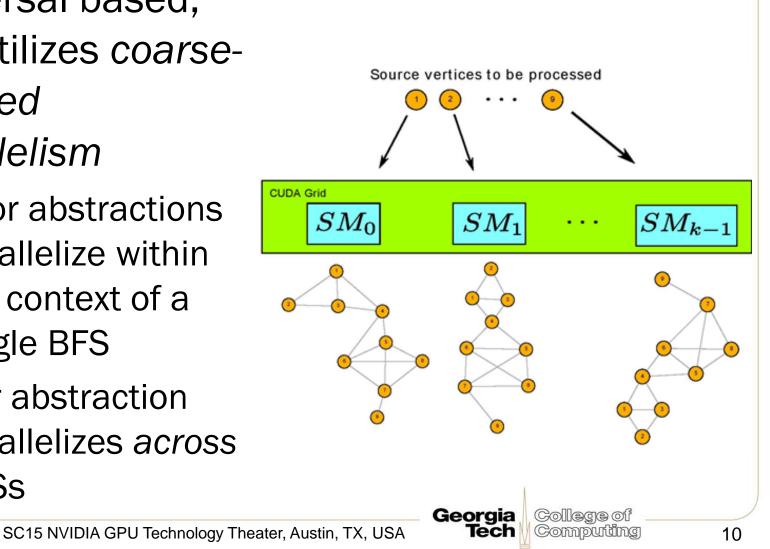
Related Work

- Abstractions for graph analysis
 - User applies code that operates on active vertices and provides the next frontier of vertices
 - Galois [Nguyen et al. SOSP '13]
 - Ligra [Shun et al. PPoPP '13]
 - Gunrock [Wang et al. PPoPP '16]
- "Hard-wired" implementations GraphLa
 - BFS [Merrill et al. PPoPP '12]
 - -hybrid_BC [McLaughlin and Bader SC '14]
 - SSSP [Davidson et al. IPDPS '14]


Georgia

The Multi-Search Abstraction

• Fits any problem requiring the simultaneous execution of many breath-first searches


- 1. All-Pairs Shortest Paths
- 2. Diameter Computations
- 3. Transitive Closures
- 4. Betweenness Centrality

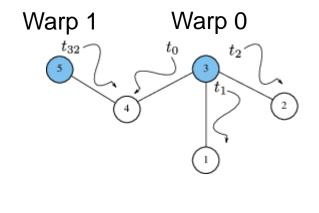
What makes this abstraction different?

- Traversal based, but utilizes coarsegrained parallelism
 - Prior abstractions parallelize within the context of a single BFS
 - Our abstraction parallelizes across BFSs

Multi-Search: APSP Example

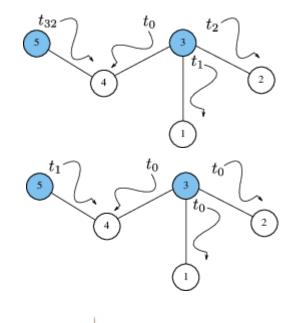
• Users need to implement a small number of short functions

```
void init(int s)
{
       for (int k=0; k<n; k++) //For each vertex
              if(k == s) d[s][k] = 0;
              else d[s][k] = INT MAX;
void visitVertex(int s, int u, int v, queue Q)
       if(d[s][v] == INT MAX)
              d[s][v] = d[s][u] + 1;
              Q.atomic enqueue(v);
                                                  (College of
                                           Georgia
```


Tech

Multi-Search: Visiting vertices

- Use a cooperative, Warp-based approach
- Warps concurrently expand adjacency lists of enqueued vertices (1 warp = 32 threads)
- Works great for vertices with high outdegree
 - Coalesced accesses to neighbor lists
- Underutilization for vertices with low outdegree


Georgia

(College of

Multi-Search: Hierarchical Queues

- To resolve this underutilization, we can assign a thread to each enqueued vertex
- Use a thresholding approach
 - Outdegree(v) >= T \rightarrow Warp processing
 - Outdegree(v) < T \rightarrow Thread processing

College of Computing

Georgia

Tech

Experimental Setup

- NVIDIA GTX Titan
 - Compute capability 3.5 ("Kepler") GPU
 - Peak theoretical memory bandwidth: 288.4 GB/s
 - 14 SMs, 6GB memory, 837MHz
- Galois/Ligra run on a quad-core CPU
 - Intel Core i7-2600K, 3.4 GHz, 8MB LLC

Geordia

Benchmark Data Sets

	Graph	Nodes	Edges	Notes/Spa:	rsity
	333SP	3.71m	22.22m	Ferrari	
	adapative	6.82m	27.25m	Urban Sim.	
	as-Skitter	1.70m	22.19m	Internet	
	auto	0.45m	6.63m	Partitioning	
	delaunay_n21	2.10m	12.58m	Triangulation	
	ecology1	1.00m	4.00m	Gene Flow	
	hollywood-2009	1.14m	115.03m	Movie Actors	
	kron_g500-logn19	0.52m	43.56m	Kronecker	
	ldoor	0.95m	45.57m	Large Door	
	roadNet-CA	1.96m	5.53m	Intersections	\geq
	rgg_n_2_21_s0	2.10m	28.98m	Geometric	
	thermal2	1.23m	7.35m	Diffusion	
				Georg	jia ©
SC15 NVI	DIA GPU Technology	Theater, A	Austin, TX, l	JSA Ie	ch ∦©

15

Timing Results: Betweenness Centrality

Framework	333SP	adaptive	as-Skitter	auto	delaunay_n21	ecology1
Galois	4651	7086	1167	637	2004	906
Ligra	3005	3442	1241	665	992	635
Gunrock	1999	4851	N/A	161	712	1458
hybrid_BC	781	993	518	407	373	176
Cooperative	352	601	275	74	174	104
Framework	hollywood-2009	kron_g500-logn19	ldoor	roadNet-CA	rgg_n_2_21_s0	thermal2
Framework Galois	hollywood-2009 2058	kron_g500-logn19 1868	<i>ldoor</i> 1240	roadNet-CA 1498	rgg_n_2_21_s0 3518	thermal2 1088
	2					
Galois	2058	1868	1240	1498	3518	1088
Galois Ligra	2058 4318	1868 623	1240 1751	1498 700	3518 2808	1088 899

- Using k = 8192 source vertices
- Cooperative is best on 11/12 graphs
- Cooperative is faster & more general than hybrid_BC

Georgia

Tech

(College of

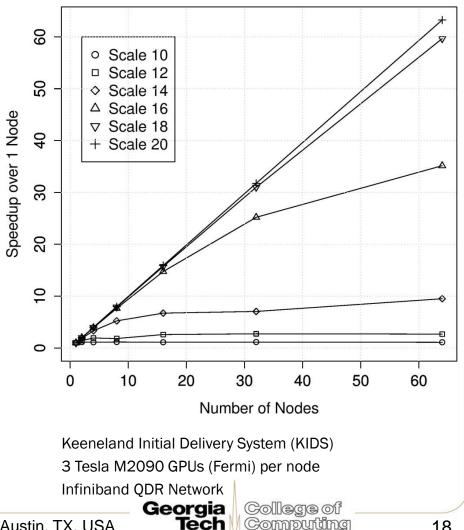
Summary: Betweenness Centrality

	Galois	Ligra	Gunrock	hybrid_BC
Speedup of Cooperative	7.66x	5.82x	3.07x	2.24x

Georgia

Tech

College of


Computing

• Average speedup over entire graph suite

Multi-GPU Results (BC)

- Linear speedups when graphs are sufficiently large
- 10+ GTEPS for 192 **GPUs**
- Scaling isn't unique to graph structure
 - Abundant coarsegrained parallelism

Conclusions

- There is **no "one size fits all" solution** for parallel graph algorithms
 - Graph structure is pivotal to performance
- Abstraction is paramount for highperformance, reusable applications
 - Prior methods of abstraction miss out on coarsegrained parallelism
 - Easily scales to many GPUs
- If the distribution of parallelism changes over time, the method of parallelism should change too

Acknowledgment of Support

• Thanks to DARPA and NVIDIA for their support of this work!

"To raise new questions, new possibilities, to regard old problems from a new angle, requires creative imagination and marks real advance in science." – Albert Einstein

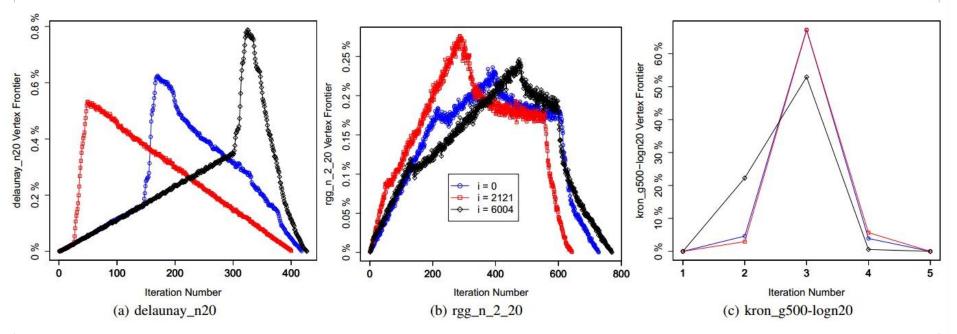
https://github.com/Adam27X/graph-utils

http://users.ece.gatech.edu/~amclaughlin7/re search.html

SC15 NVIDIA GPU Technology Theater, Austin, TX, USA

Georgia College of Tech Computing

Backup


SC15 NVIDIA GPU Technology Theater, Austin, TX, USA

Georgia Tech College of Computing

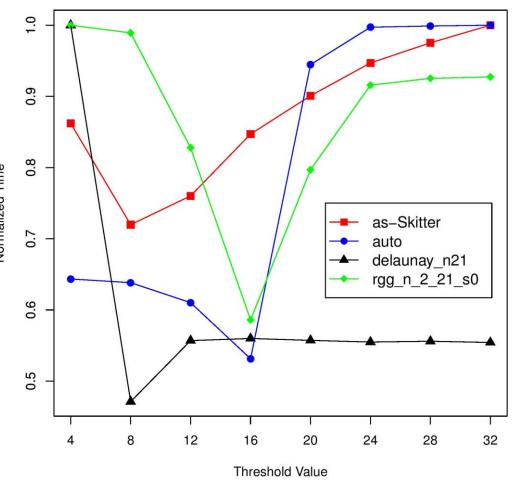
Motivation for Hybrid Methods

No one method of parallelization works best

- High diameter: Only do useful work
- Low diameter: Leverage memory bandwidth

Georgia

Tech


College of

Computing

Effect of Thresholding

- T = 0: Warp
- T = ∞: Thread
- Too small: Warp occupancy suffers
 Too large: severe
- Too large: severe workload imbalances among threads
- T = 16 (Half-warp)

Georgia

Tech

College of