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• Common denominator: 

Graph Analysis 
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“Traditional” HPC is Expensive 

• Tianhe-2: 17.8 MW 

• Titan: 8.2 MW 

• Distributed systems are often overkill  

– Too much time and energy wasted on expensive 

communication 

– Shared memory is large enough (~1 TB) 

• Leverage the high memory bandwidth of 

NVIDIA GPUs 
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GPUs are Challenging to Program 

• Months of domain expert 

programmer time required 

to develop/optimize code 

• Efforts are typically limited 

to a single problem, 

architecture, or data set 

– Little code reuse 

– Limited number of libraries 
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– Opaque, yet drastic, performance consequences 



What makes GPU Computing so Difficult? 

• Parallel programming challenges 

– Deadlock, synchronization, race conditions 

• Architectural/Ecosystem challenges 

– Programmer managed shared memory 

– Deep knowledge of the underlying architecture 

required 

• Challenges unique to graph analysis 

– Data dependent memory access patterns 

SC15 NVIDIA GPU Technology Theater, Austin, TX, USA 6 



Solution: Abstraction 

• Abstract details of parallel 

programming from end users 

• Let social scientists, analysts, 

etc. focus on gathering 

insights 

• Let domain experts focus on 

parallel programming, 

architectural details 

– Encourage modularity and 

code reuse 
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Related Work 

• Abstractions for graph analysis 

– User applies code that operates on active 

vertices and provides the next frontier of vertices 

– Galois [Nguyen et al. SOSP ‘13] 

– Ligra [Shun et al. PPoPP ‘13] 

– Gunrock [Wang et al. PPoPP ‘16] 

• “Hard-wired” implementations 

– BFS [Merrill et al. PPoPP ‘12] 

– hybrid_BC [McLaughlin and Bader SC ‘14] 

– SSSP [Davidson et al. IPDPS ‘14] 
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The Multi-Search Abstraction 

• Fits any problem requiring the simultaneous 

execution of many breath-first searches 

 

1. All-Pairs Shortest Paths 

2. Diameter Computations 

3. Transitive Closures 

4. Betweenness Centrality 
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What makes this abstraction different? 

• Traversal based, 

but utilizes coarse-

grained 

parallelism 

– Prior abstractions 

parallelize within 

the context of a 

single BFS 

– Our abstraction 

parallelizes across 

BFSs 
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Multi-Search: APSP Example 

• Users need to implement a small number of short functions 
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void init(int s) 

{ 

 for(int k=0; k<n; k++) //For each vertex 

 { 

  if(k == s) d[s][k] = 0; 

  else d[s][k] = INT_MAX; 

 } 

} 

void visitVertex(int s, int u, int v, queue Q) 

{ 

 if(d[s][v] == INT_MAX) 

 { 

  d[s][v] = d[s][u] + 1; 

  Q.atomic_enqueue(v); 

 } 

} 



Multi-Search: Visiting vertices 

• Use a cooperative, Warp-based approach 

• Warps concurrently expand adjacency lists of 

enqueued vertices (1 warp = 32 threads) 
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• Works great for vertices 

with high outdegree 

– Coalesced accesses to 

neighbor lists 

• Underutilization for 

vertices with low 

outdegree 

Warp 0 Warp 1 



Multi-Search: Hierarchical Queues 

• To resolve this underutilization, we can 

assign a thread to each enqueued vertex 
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• Use a thresholding approach 

– Outdegree(v) >= T → Warp 

processing 

 

– Outdegree(v) < T → Thread 

processing 



Experimental Setup 

• NVIDIA GTX Titan 

– Compute capability 3.5 ("Kepler") GPU 

– Peak theoretical memory bandwidth: 288.4 GB/s 

– 14 SMs, 6GB memory, 837MHz 

• Galois/Ligra run on a quad-core CPU 

– Intel Core i7-2600K, 3.4 GHz, 8MB LLC 
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Benchmark Data Sets 
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Timing Results: Betweenness Centrality 
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• Using 𝑘 = 8192 source vertices 

• Cooperative is best on 11/12 graphs 

• Cooperative is faster & more general than 
hybrid_BC 



Summary: Betweenness Centrality 

Galois Ligra Gunrock hybrid_BC 

Speedup of 

Cooperative 

7.66x 5.82x 3.07x 2.24x 

SC15 NVIDIA GPU Technology Theater, Austin, TX, USA 17 

• Average speedup over entire graph suite 



Multi-GPU Results (BC) 
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• Linear speedups when 

graphs are sufficiently 

large 

• 10+ GTEPS for 192 

GPUs 

• Scaling isn’t unique to 

graph structure 

– Abundant coarse-

grained parallelism 

 
Keeneland Initial Delivery System (KIDS) 

3 Tesla M2090 GPUs (Fermi) per node 

Infiniband QDR Network 



Conclusions 
• There is no “one size fits all” solution for 

parallel graph algorithms 

– Graph structure is pivotal to performance 

• Abstraction is paramount for high-

performance, reusable applications  

– Prior methods of abstraction miss out on coarse-

grained parallelism  

– Easily scales to many GPUs 

• If the distribution of parallelism changes over 

time, the method of parallelism should 

change too  
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Questions 
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“To raise new questions, new possibilities, to 

regard old problems from a new angle, requires 

creative imagination and marks real advance in 

science.”– Albert Einstein 

https://github.com/Adam27X/graph-utils 

http://users.ece.gatech.edu/~amclaughlin7/re

search.html 
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Backup 
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Motivation for Hybrid Methods 

• No one method of parallelization works best 
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• High diameter: Only do useful work 

• Low diameter: Leverage memory bandwidth 



Effect of Thresholding 
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• T = 0: Warp 

• T = ∞: Thread 

• Too small: Warp 

occupancy suffers 

• Too large: severe 

workload 

imbalances 

among threads 

• T = 16 (Half-warp) 


