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e Tianhe-2: 17.8 MW
e Titan: 8.2 MW

e Distributed systems are often overkillw

- Too much time and energy wasted on expensive
communication

- Shared memory is large enough (~1 TB)

* Leverage the high memory bandwidth of
NVIDIA GPUs F~
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GPUs are Challenging to Program

e Months of domain expert
programmer time required
to develop/optimize code

e Efforts are typically limited
to a single problem,
architecture, or data set

— Little code reuse

- Limited number of libraries
- Opaque, yet drastic, performance consequences
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What makes GPU Computing so Difficult?

e Parallel programming challenges
- Deadlock, synchronization, race conditions

* Architectural/Ecosystem challenges
- Programmer managed shared memory

- Deep knowledge of the underlying architecture
required

* Challenges unique to graph analysis
- Data dependent memory access patterns

% cuDNN
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Solution: Abstraction

e Abstract details of parallel

programming from end users
e Let social scientists, analysts,

etc. focus on gathering
Insights

e et d
para

omain experts focus on

lel programming,

architectural details

- Encourage modularity and
code reuse

SC15 NVIDIA GPU Technology Theater, Austin, TX, USA

Georgia Coadllege of

Tech

Conpuitding



Related Work

* Abstractions for graph analysis

- User applies code that operates on active
vertices and provides the next frontier of vertices

- Galois [Nguyen et al. SOSP ‘13] o orr o g,
- Ligra [Shun et al. PPOPP ‘13] e
- Gunrock [Wang et al. PPoPP ‘16] ( Q

e “Hard-wired” implementations (Grapnla b\
- BFS [Merrill et al. PPoPP ‘12]
—hybrid BC [McLaughlin and Bader SC ‘14]

- SSSP [Davidson et al. IPDPS ‘14]
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The Multi-Search Abstraction

* Fits any problem requiring the simultaneous
execution of many breath-first searches

1. All-Pairs Shortest Paths
2. Diameter Computations
3. Transitive Closures

4. Betweenness Centrality
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What makes this abstraction dlfferent”

 Traversal based,
but utilizes coarse-

Source vertices to be processed

grained 0@ - @
parallelism / N\
- Prior abstractions | [z sl - [SMms
parallelize within o o o
the context of a o0 g < ®
single BFS e 0 ® ©
- Our abstraction ¥ XK'
® ® o

parallelizes across
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NE mE .
Multi-Search: APSP Example

e Users need to implement a small number of short functions

vold 1nit(int s)
{
for (int k=0; k<n; k++) //For each vertex
{
1f(k == s) d[s][k] = 0O;
else d[s] [k] = INT MAX;

}

volid visitVertex(int s, int u, 1nt v, queue Q)
{
1if(d[s] [v] == INT MAX)
{
dls] [v] = d[s][u] + 1;
Q.atomic enqueue (V)

14
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Multi-Search: Visiting vertices

e Use a cooperative, Warp-based approach

 Warps concurrently expand adjacency lists of
enqueued vertices (1 warp = 32 threads)

* Works great for vertices
with high outdegree

Warp 1 Warp 0
- Co_alesced. accesses to ’L (\3 ltﬂf
neighbor lists ) 8 )
e Underutilization for O
vertices with low
outdegree
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Multi-Search: Hierarchical Queués

* To resolve this underutilization, we can
assign a thread to each enqueued vertex

e Use a thresholding approach

- Outdegree(v) >=T — Warp O 1 (\) 1 1
processing O 8
O
— OQutdegree(v) < T — Thread @ 1f\) ?1
processing o\
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Experimental Setup

e NVIDIA GTX Titan
- Compute capability 3.5 ("Kepler") GPU
- Peak theoretical memory bandwidth: 288.4 GB/s
- 14 SMs, 6GB memory, 837MHz

e Galois/Ligra run on a quad-core CPU
- Intel Core i7-2600K, 3.4 GHz, SMB LLC
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Benchmark Data Sets

Graph Nodes Edges Notes/Sparsity
3335P 3.71m 22.22m Ferrari
adapative 6.82m 27.25m Urban Sim.
as-Skitter 1.70m 22.19m Internet
auto 0.45m 6.63m Partitioning
delaunay_n21 2.10m 12.58m Triangulation
ecologyl 1.00m 4.00m Gene Flow

hollywood-2009 [.14m 115.03m Movie Actors

kron_g500-lognl9  0.52m 43.56m Kronecker
ldoor 0.95m 45.57m Large Door _
roadNet-CA 1.96m 5.53m Intersections
rgg_n_2_21_s0 2.10m 28.98m Geometric AN
thermal?2 1.23m 7.35m Diffusion \--'
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Timing Results: Betweenness Centrallty

Framework 333SP adaptive  as-Skitter auto delaunay_n21 ecologyl
Galois 4651 7086 1167 637 2004 906
Ligra 3005 3442 1241 665 992 635
Gunrock 1999 4851 N/A 161 712 1458

hybrid_BC 781 993 518 407 373 176

Cooperative 352 601 275 74 174 104

Framework hollywood-2009  kron_g500-lognl9 ldoor roadNet-CA rgg n_2_21 sO thermal2
Galois 2058 1868 1240 1498 3518 1088
Ligra 4318 623 1751 700 2808 899
Gunrock 630 406 395 N/A N/A 277

hybrid_BC 1591 522 621 403 1066 204

Cooperative 602 523 183 145 399 115

e Using k = 8192 source vertices

e Cooperative is best on 11/12 graphs

* Cooperative is faster & more general than

hybrid BC
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Summary: Betweenness Centrallty

| Galois | _Ligra__| _Gunrock | hybrid BC

Speedup of 7.66X 5.82x 3.07x 2.24xX
Cooperative

* Average speedup over entire graph suite
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Multi-GPU Results (BC)

e Linear speedups when

graphs are sufficiently 27 reew

o Scale 12

large . 2 S T

* 10+ GTEPS for 192 S|

GPUs

e Scaling isn’t unique to
graph structure

20

Speedup over 1 Node
30
| |

10
I

- Abundant coarse- 0 10 20 30 40 50 60
grained parallelism Number of Nodes

Keeneland Initial Delivery System (KIDS)
3 Tesla M2090 GPUs (Fermi) per node
Infiniband QDR Network
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Conclusions
e There is no “one size fits all” solution for
parallel graph algorithms

- Graph structure is pivotal to performance

* Abstraction is paramount for high-
performance, reusable applications

- Prior methods of abstraction miss out on coarse-
grained parallelism

— Easily scales to many GPUs

e |f the distribution of parallelism changes over
time, the method of parallelism should
Change tOO Georgia Cadllege off
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Questions

“To raise new questions, new possibilities, to
regard old problems from a new angle, requires
creative imagination and marks real advance in

science.” - Albert Einstein

https://github.com/Adam?27X/graph-utils

http://users.ece.gatech.edu/~amclaughlin7/re
search.html
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Backup
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delaunay_n20 Vertex Frontier

02 % 0.4 % 0.6 % 0.8 %
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Motivation for Hybrid Methods

e No one method of parallelization works best

kron_g500-logn20 Vertex Frontier
0% 10% 20% 30% 40% 50% 60%

rgg_n_2_20 Vertex Frontier
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(a) delaunay_n20 (b) rgg_n_2_20 (c) kron_g500-logn20

e High diameter: Only do useful work
* Low diameter: Leverage memory bandwidth

Georgia College off
SC15 NVIDIA GPU Technology Theater, Austin, TX, USA Tech Compuidng

23




Effect of Thresholding

e T=0: Warp
e T=o:Thread

 Too small: Warp
occupancy suffers

* Too large: severe
workload
Imbalances
among threads

e T =106 (Half-warp)
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