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November 2015: The TOP 10 Systems 

Rank     Site Computer Country Cores 
Rmax 

[Pflops] 
% of 
Peak 

Power 
[MW] 

MFlops
/Watt 

1 
National Super 

Computer Center in 
Guangzhou 

Tianhe-2 NUDT,  
Xeon 12C + IntelXeon Phi (57c) 

+ Custom 
China 3,120,000 33.9 62 17.8 1905 

2 
DOE / OS                 

Oak Ridge Nat Lab 

Titan, Cray XK7, AMD (16C) + 
Nvidia Kepler GPU (14c) + 

Custom  
USA 560,640 17.6 65 8.3 2120 

3 
DOE / NNSA                 

L Livermore Nat Lab 
Sequoia, BlueGene/Q (16c)       

+ custom  
USA 1,572,864 17.2 85 7.9 2063 

4 
RIKEN Advanced 
Inst for Comp Sci 

K computer Fujitsu SPARC64 
VIIIfx (8c) + Custom 

Japan 705,024 10.5 93 12.7 827 

5 
DOE / OS                 

Argonne Nat Lab 
Mira, BlueGene/Q (16c)          

+ Custom 
USA 786,432 8.16 85 3.95 2066 

6 
DOE / NNSA /    

Los Alamos & Sandia  
Trinity, Cray XC40,Xeon 16C + 

Custom  
USA 301,056 8.10 80 

7 Swiss CSCS 
Piz Daint, Cray XC30, Xeon 8C + 

Nvidia Kepler (14c) + Custom  
Swiss 115,984 6.27 81 2.3 2726 

8 HLRS Stuttgart 
Hazel Hen, Cray XC40, Xeon 

12C+ Custom 
Germany 185,088 5.64 76 

9 KAUST 
Shaheen II, Cray XC40, Xeon 

16C + Custom 
Saudi 
Arabia  

196,608 5.54 77 2.8 1954 

10 
Texas Advanced 
Computing Center 

Stampede, Dell Intel (8c) + Intel 
Xeon Phi (61c) + IB 

USA 204,900 5.17 61 4.5 1489 

500 (368) Karlsruher  MEGAWARE  Intel        Germany     10,800        .206         95                       
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Those new algorithms  
    - have a very low granularity, they scale very well (multicore, petascale computing, … ) 
    - removes of dependencies among the tasks, (multicore, distributed computing) 
    - avoid latency (distributed computing, out-of-core) 
    - rely on fast kernels  
 Those new algorithms need new kernels and rely on efficient scheduling algorithms. 

 MAGMA 

 Hybrid Algorithms 

 (heterogeneity friendly)  

Rely on 

 - hybrid scheduler (of DAGs) 

 - hybrid kernels  

    (for nested parallelism) 

 - existing software infrastructure 

Next Generation of DLA Software 



Key Features of MAGMA 1.7 
HYBRID ALGORITHMS 

MAGMA uses hybrid algorithms where the computation is split into tasks of  

varying granularity and their execution scheduled over the hardware components. 

Scheduling can be static or dynamic. In either case, small non-parallelizable tasks,  

often on the critical path, are scheduled on the CPU, and larger more parallelizable 

ones, often Level 3 BLAS, are scheduled on the MICs. 

 

PERFORMANCE  &  ENERGY EFFICIENCY 
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MAGMA Libraries & Software 
Stack 

MAGMA      with dynamic scheduling 

 

 

single 

multi 

distr. 

C P U GPU  H Y B R I D 

BLAS 

BLAS 

MAGMA BLAS, panels, auxiliary 

LAPACK 

CUDA 

Support:    Linux, Windows, Mac OS X; C/C++, Fortran; Matlab, Python 

      MAGMA SPARSE      (kernels, data formats, iterative & direct ) 

MAGMA 1.7 (Hybrid LAPACK) 

StarPU run-time system PLASMA / Quark 

                                        MAGMA 1.7 (Hybrid LAPACK) 

Hybrid LAPACK/ScaLAPACK & Tile Algorithms 

PaRSEC 
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Using MAGMA 
• Support is provided through the MAGMA user forum 

http://icl.cs.utk.edu/magma/forum/viewforum.php?f=2 
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http://icl.cs.utk.edu/magma/forum/viewforum.php?f=2


Using MAGMA 
• Doxygen documentation 

http://icl.cs.utk.edu/projectfiles/magma/doxygen/ 

11 / 60 

http://icl.cs.utk.edu/magma/docs/


Methodology overview  

• MAGMA uses hybridization methodology based on 

– Representing linear algebra algorithms as collections  

of tasks and data dependencies among them 

– Properly scheduling tasks' execution over  

multicore and GPU hardware components 

 

• Successfully applied to fundamental 

linear algebra algorithms 

– One- and two-sided factorizations and solvers 

– Iterative linear and eigensolvers 

 

• Productivity 

– 1) High level; 2) Leveraging prior developments; 3) Exceeding in performance homogeneous 

solutions 

Hybrid CPU+GPU algorithms 
(small tasks for multicores and  

large tasks for GPUs) 

A methodology to use all available resources: 
 



A Hybrid Algorithm Example 
• Left-looking hybrid Cholesky factorization in MAGMA 

 

 

 

 

 

 

 

• The difference with LAPACK – the 4 additional lines in red 

• Line 8 (done on CPU) is overlapped with work on the GPU (from line 6)  
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Mixed precision iterative refinement 

Matrix size 

Solving general dense linear systems using mixed precision iterative refinement 
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MultiGPU Support 

• Data distribution 

– 1-D block-cyclic distribution 

• Algorithm 

– GPU holding current panel  

is sending it to CPU 

– All updates are done in  

parallel on the GPUs 

– Look-ahead is done with GPU holding 

the next panel 
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Density Functional Theory   

21 / 32 

Many-body Schrödinger equation (exact but exponential scaling) 

 

In modern electronic structure methods (density functional theory)  

this is reduced to the Kohn-Sham equation  

(single particle method with polynomial complexity) 

The potential V depends on Ψi, so the equation must be solved many times until convergence:   

• Introduce a basis ϕi for the orbitals Ψ 

• The Hamiltonian is a Hermitian matrix 

  

• The basis may not be orthonormal 

 

• Solve the generalized eigenvalue problem    H x = ε S x 

Hi, j = fi(r) -
1

2
Ñ2 +V(r, r)

æ

è
ç

ö

ø
÷f j (r)drò

Si, j = fi(r)f j (r)drò



Eigenproblem Solvers in MAGMA 

•  A x  = λ x  
– Quantum mechanics (Schrödinger equation) 

– Quantum chemistry  

– Principal component analysis (in data mining) 

– Vibration analysis (of mechanical structures) 

– Image processing, compression, face recognition 

– Eigenvalues of graph, e.g., in Google’s page rank 

 .  .  . 

 
• Need to solve it fast  

Current MAGMA results:  

     MAGMA with 1 GPU can be 12x faster vs. vendor libraries on state-of-art multicore systems 
T. Dong, J. Dongarra, S. Tomov, I. Yamazaki, T. Schulthess, and R. Solca, Symmetric dense matrix-vector multiplication on multiple GPUs  

and its application to symmetric dense and sparse eigenvalue problems, ICL Technical report, 03/2012. 

J. Dongarra, A. Haidar, T. Schulthess, R. Solca, and S. Tomov, A novel hybrid CPU- GPU generalized eigensolver for electronic structure  
calculations based on fine grained memory aware tasks, ICL Technical report, 03/2012. 

 



Distributed memory systems 
Generalized Hermitian Definite eigensolvers 
with Thomas Schulthess et al. [1], CSCS  
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[1] R. Solca, A. Kozhevnikov, A. Haidar, S. Tomov, T. Schulthess, and J. Dongarra, Efficient implementation of quantum material 

     simulations on distributed CPU-GPU systems.  SC’15, Best Paper Award finalist, Austin, TX, November 15-20, 2015.  

• Generalized Hermitian definite eigenproblem of the form 

              H x = ε S x 

• Solution follows the following steps 
1) Compute the Cholesky factorization  of   

             S = L LH 

2) Transform the generalized eigenproblem to standard form 

             Ĥ z = λ z,    Ĥ = L-1 H L-H 

3) Solve the standard eigenproblem 

              Ĥ  = Z  Λ ZH 

4) Back-solve the eigenvectors with the Cholesky factor  

              X = L-H Z 

  
 



• R. Solca, A. Kozhevnikov, A. Haidar, S. Tomov, T. Schulthess, and J. Dongarra, Efficient implementation of quantum material 

   simulations on distributed CPU-GPU systems.  SC’15, Best Paper Award finalist, Austin, TX, November 15-20, 2015.  

 

• A. Haidar, S. Tomov, J. Dongarra, T. Schulthess, and R. Solca,  

  A novel hybrid CPU-GPU generalized eigensolver for electronic structure calculations based on fine grained memory aware tasks, 

  International Journal of High Performance Computing Applications , vol. 28, no 2, pp. 196—209, May 2014. 

 

• A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. Leading edge multi-GPU algorithms for generalized eigenproblems for 

electronic structure calculations. International Supercomputing Conference IEEE-ISC 2013.  

 

MAGMA is 1.5 times faster than CPU 

MAGMA is 2 times more energy efficient 

Piz Daint  

Cray XC30: 

• 8-core Intel Xeon E5-

2670  Sandy Bridge socket 

• Nvidia K20X 

Setup H20 Solve HC=4OC The rest total 

392 CPU nodes 

ScaLAPACK 
463.7 3839.7 61.6 4365.0 

392 CPU nodes 

ELPA 
471.7 1199.3 60.7 1731.7 

192 CPU+GPU 

nodes 

MAGMA 

166.7 911.9 79.9 1158.5 

Distributed memory systems 
Generalized Hermitian Definite eigensolvers: performance results   

24 / 32 



Motivation 
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Linear Algebra on small problems  

are needed in many applications: 

Without MAGMA Batched          with MAGMA Batched 

Large matrices 

• Machine learning, 

• Data mining, 

• High-order FEM,  

• Numerical LA, 

• Graph analysis, 

• Neuroscience, 

• Astrophysics, 

• Quantum chemistry, 

• Multi-physics problems, 

• Signal processing, 

and more 

 



Expected 

acceleration 

ranges 

 

       

 

 

    Batched vs. standard LA techniques 
   Batched  

(for small problems) 

 Standard  

(for large problems ) 

  

Basic Linear Algebra 

Subprograms (BLAS) 

 

Batched BLAS 

(no scheduling overheads) 

 

      Vendor optimized BLAS 

(e.g., CUBLAS, Intel MKL) 

 

      Advanced routines: 

• Linear system solvers 

• Eigensolvers & SVD 

 

• Built on Batched BLAS 

• GPU-only (no comm.) 

• Batch-aware algorithms 

• Batch-scheduled  

 

• Built on BLAS 

• Hybrid CPU + GPU 

• High-level algorithms 

• DAG scheduling 

26 

LA problems 

Techniques 

small       128    

>5x 

>10x 

small       128    

Motivation … 
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Examples 
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Code Gen erat i on
C++11 features will be used as much as possible. Additional 

needs will be handled by defining a domain specific embedded 

language (DSEL). This technique is used in C++ to take advantage 

of DSL features while using the optimizations provided by a 

standard compiler. It will handle the generation of versions (index 

reordering, next) to be empirically evaluated and be part of the 

autotuning framework. 

 

Aut ot un in g
We are developing fixed-size gemm kernels for GPUs, Xeon Phi, 

and multicore (see Figure on Right for a single core intel Xeon E5-

2620 and K40) through an autotuning framework. A number of 

generic versions are developed and parametrized for 

performance. The parameters are autotuned (empirically) to find 

“best” kernels for specific size.  

 

Ten sor  operat i on s i n  h igh - order  FEM
Consider the FE mass matrix ME for an element/ zone E with 

weight ρ, as a 2-dimensional tensor:

i, j = 1,..., nd , where 

Take the nq x nd matrix                          and                                          

Then,                                                       , or omitting the E subscript                       

                     .

Using FE of order p, we have nd = O(pd) and nq = O(pd), so B is 

dense O(pd) x O(pd) matrix. 

If the FE basis and the quadrature rule have tensor product 

structure, we can decompose dofs and quadrature point indices in 

logical coordinate axes

                   i = (i
1
, …, i

d
),    j  = (j

1
, …, j

d
),    k = (k

1
, …, k

d
)

so M
ij
 can be viewed as 2d-dimensional tensor M

i1, …, id, j1, …, jd
. 

Sum m ary of  k ern els n eeded:
● Assembly of M, referred as equations (1) & (2) below  

● Evaluations of M times V, referred as equations (3) & (4) below 

Tow ards a H igh - Per f orm an ce Ten sor  Algebra Pack age f or  Accelerat ors

M. Baboul in , V. Dobrev, J. Dongar ra, C. Ear l , J. Falcou, A. Haidar , I . Kar l in , T. Kolev, I . Masl iah , and S. Tom ov

Abst ract
Numerous important applications, e.g., high-order FEM 

simulations, can be expressed through tensors. Examples are 

computation of FE matrices and SpMV products expressed as 

generalized tensor contractions. Contractions by the first index 

can often be represented as tensor index reordering plus gemm, 

which is a key factor to achieve high-performance. We present 

ongoing work on the design of a high-performance package in 

MAGMA for Tensor algebra that includes techniques to organize 

tensor contractions, data storage, and parametrization related to 

batched execution of large number of small tensor contractions. 

We apply auto-tuning and code generation techniques to provide 

an architecture-aware, user-friendly interface.

M ot i vat ion  
Numerous important applications can be expressed through 

tensors:

● High-order FEM simulations

● Signal Processing

● Numerical Linear Algebra

● Numerical Analysis

The goal is to design a:

● High-performance package for Tensor algebra

● Built-in architecture-awareness (GPU, Xeon Phi, multicore)

● User-friendly interface

Exam ple cases

Numerical linear algebra:

● A 4-dimensional tensor contraction

● rank-k update on matrices in tile format (k can be small, e.g., 

sub-vector/warp size)

● Must determine (in software) if possible to do it through 

batched GEMM kernels

[1] V. Dobrev, T.Kolev, R.Rieben. High order curvilinear finite element methods for Lagrangian 

hydrodynamics. SIAM J.Sci.Comp.34(5), B606–B641. (36 pages)

APPROACH AND RESULTS

User - f r i en dly in t er f ace 

To provide various interfaces, including one using C++11. 

Top level design to provide features similar to the 

mshadow library. https:/ / github.com/dmlc/mshadow

In dex reorder in g/ reshape 
If we store tensors as column-wise 1D arrays,                                                                                      

, i.e., M can be interpreted as a 4th order tensor, a nd x nd matrix, or 

a vector of size nd2, without changing the storage. We can define

as long as n
1
...n

r
 = m

1
…m

q
 and for every 

i
1..r 

, j
1..q

i
1 
+ n

1
i
2 
+ … + n

1
n

2
...n

r-1
i
r
  =  j

1 
+ m

1
j
2 
+ … + m

1
m

2
…m

q-1
j
q
.

Contractions can be implemented as a sequence of pairwise 

contractions. There is enough complexity here to search for 

something better: code generation, index reordering, and 

autotuning will be used, e.g., contractions (3a) - (4f) can be 

implemented as tensor index-reordering plus gemm A, B -> ATB.

  // Our current interface :

  // create a 2 x 5 x 2 float tensor , default locality is cpu using std::vector as default backend for data

  Tensor<2,5,2> ts;

  // create a 2 x 5 x 2 tensor on the gpu using thrust as the default backend for data

  Tensor<2,5,5,gpu_> d_ts;

  // Call a thrust function to set values to 9

  thrust::fill(d_ts.begin() , d_ts.end() , 9);

  // Send back values to the cpu tensor

  ts = d_ts ;

  // Reorder the 2 x 5 x 2 tensor to a matrix 2 x 10 using views

  view<2,10>  mat = ts ;

● Data Mining

● Deep Learning

● Graph Analysis

● Neuroscience and more

Bat ched LA 
Tensor contractions are transformed through reshapes to batched LA operations, many of which available in MAGMA[2]  http:/ / icl.cs.utk.

edu/magma/  (including LU, QR, Cholesky, GEMM, GEMV, TRSM, SYRK).  

[2]  A.Haidar, T.Dong, S.Tomov, P.Luszczek, and J.Dongarra. A framework for batched and GPU-resident factorization algorithms applied to block  Householder transformations. ISC High Performance 2015, Frankfurt, 

Germany, July 12-16, 2015.

Con clusion s an d Fut ure di rect i on s
● High-performance package on Tensor Algebra has the potential for high-impact on a number of important applications

● Multidisciplinary effort

● Current results show promising performance, where various components will be leveraged from autotuning MAGMA Batched linear 

algebra kernels, and BLAST from LLNL

● This is an ongoing work

Figure: 

Batched dgemms on K40 GPU.

Batch count is 2,000.

MAGMA exceeds in performance 

CUBLAS for “small” sizes, currently 

tuned for above 32. Current work is 

concentrated on kernels for fixed 

smaller (sub-warp) sizes. 

Gatlinburg, Tennessee, Aug 31- Sept 2, 2015

http://computing.ornl.gov/workshops/SMC15/
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. 

LLNL release number LLNL-POST-676632

ICL's work on this material was supported by the National Science Foundation under Grant ACI-1339822, the Department of Energy, and NVIDIA.

Need of Tensor contractions  

for FEM simulations 
[ collaboration with LLNL on BLAST package and Inria, France ] 
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● Deep Learning
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● Neuroscience and more
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Batch count is 2,000.

MAGMA exceeds in performance 

CUBLAS for “small” sizes, currently 

tuned for above 32. Current work is 

concentrated on kernels for fixed 

smaller (sub-warp) sizes. 
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• Contractions can often be implemented as index reordering 

plus batched GEMM (and hence, be highly efficient)      
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Need of Batched routines for Numerical LA 
[ e.g., sparse direct multifrontal methods, preconditioners for sparse iterative methods, tiled algorithms in dense linear algebra, etc.; ] 

 LU, QR, or Cholesky  

on small diagonal matrices 

Sparse / Dense Matrix 

System 

 TRSMs, QRs, or LUs   

 TRSMs, TRMMs 

 Updates (Schur complement)  

GEMMs, SYRKs, TRMMs 

DAG-based factorization 
To capture main LA patterns needed in a 

numerical library for Batched LA  

• Example matrix from Quantum chromodynamics 

• Reordered and ready for sparse direct multifrontal solver 

• Diagonal blocks can be handled in parallel through batched 

LU, QR, or Cholesky factorizations  



Convolution operation: 

• For every filter Fn and every channel, the computation for every  

pixel value On,k  is a tensor contraction: 

 

 

 

• Plenty of parallelism; small operations that must be batched 

• With data “reshape” the computation can be transformed 

into a batched GEMM (and hence, efficiently implemented; 

among other approaches)      
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Need of Batched and/or Tensor contraction routines in machine learning 

Dk 

e.g., Convolutional Neural Networks (CNNs) used in computer vision  

 Key computation is convolution of Filter Fi (feature detector) and input image D (data):     

Filters F 

Data D 

Fn 

     On 

n,kO

n,kO =
k,iD

i

å n,iF

Output O 
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Multi-physics problems need Batched LA on small problems  

• Many physical systems can be modeled by a fluid dynamics plus kinetic approximation 

e.g., in astrophysics, stiff equations must be integrated numerically:  

• Implicitly; standard approach, leading to need of batched solvers (e.g., as in XNet library) 

• Explicitly; a new way to stabilize them with  Macro- plus Microscopic equilibration 

                         need batched tensor contractions of variable sizes 

Collaboration with ORNL and UTK physics department (Mike Guidry, Jay Billings, Ben Brock, Daniel Shyles, Andrew Belt)      

Explicit vs. Implicit speedup on single network  

10x speedup on few hundred species  

(few hundred dof batched solve in implicit methods) 

Additional acceleration achieved through MAGMA Batched 

An additional 7x speedup over initially highly 

optimized explicit method implementation 



Collaborators and Support 

MAGMA team 

http://icl.cs.utk.edu/magma 

PLASMA team 

http://icl.cs.utk.edu/plasma 

Collaborating partners 

University of Tennessee, Knoxville 
University of California, Berkeley 
University of Colorado, Denver 
INRIA, France (StarPU team) 
KAUST, Saudi Arabia 



 Characteristics 
• Blas-2 GEMV moved to the GPU, 

• Accelerate the algorithm by doing all BLAS-3 on GPU, 

• Bulk sync phases, 

• Memory bound algorithm. 

 

Keeneland system, using one node 

3 NVIDIA GPUs (M2090@ 1.1 GHz, 5.4 GB) 

2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB) 

flops formula: n3/3*time 

Higher is faster 

          A. Haidar, S. Tomov, J. Dongarra, T. Schulthess, and R. Solca,   A novel hybrid  
CPU-GPU generalized eigensolver for electronic structure calculations based on  
fine grained memory aware tasks, ICL Technical report, 03/2012. 

Toward fast Eigensolvers 



first 
 
stage 

 

second 
 
stage 

 
          A. Haidar, S. Tomov, J. Dongarra, T. Schulthess, and R. Solca,   A novel hybrid  

CPU-GPU generalized eigensolver for electronic structure calculations based on  
fine grained memory aware tasks, ICL Technical report, 03/2012. 

 Characteristics 
• Stage 1: BLAS-3, increasing computational intensity, 

• Stage 2: BLAS-1.5, new cache friendly kernel, 

• 4X/12X faster than standard approach, 

• Bottelneck: if all Eigenvectors are required, it has 1 back 

transformation extra cost. 

 

 

Keeneland system, using one node 

3 NVIDIA GPUs (M2090@ 1.1 GHz, 5.4 GB) 

2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB) 

flops formula: n3/3*time 

Higher is faster 

Acceleration w/ 3 GPUs:  

15 X vs. 12 Intel cores   

Toward fast Eigensolvers 



Current work 
High-productivity w/ Dynamic Runtime Systems 

From Sequential Nested-Loop Code to Parallel Execution 
 

for (k = 0; k < min(MT, NT); k++){ 

 zgeqrt(A[k;k], ...); 

 for (n = k+1; n < NT; n++) 

  zunmqr(A[k;k], A[k;n], ...); 

 for (m = k+1; m < MT; m++){ 

  ztsqrt(A[k;k],,A[m;k], ...); 

  for (n = k+1; n < NT; n++) 

   ztsmqr(A[m;k], A[k;n], A[m;n], ...); 

 } 

} 
 

 



Current work 
High-productivity w/ Dynamic Runtime Systems 

From Sequential Nested-Loop Code to Parallel Execution 
 

for (k = 0; k < min(MT, NT); k++){ 

 Insert_Task(&cl_zgeqrt, k , k, ...); 

 for (n = k+1; n < NT; n++) 

  Insert_Task(&cl_zunmqr, k, n, ...); 

 for (m = k+1; m < MT; m++){ 

  Insert_Task(&cl_ztsqrt, m, k, ...); 

  for (n = k+1; n < NT; n++) 

   Insert_Task(&cl_ztsmqr, m, n, k, ...); 

 } 

} 

Various runtime systems can be used: 

• StarPUhttp://icl.cs.utk.edu/projectsdev/m

orse 

• PaRSEC 
https://icl.cs.utk.edu/parsec/ 

• QUARK 
http://icl.cs.utk.edu/quark/ 

 

http://icl.cs.utk.edu/projectsdev/morse
http://icl.cs.utk.edu/projectsdev/morse
https://icl.cs.utk.edu/parsec/
http://icl.cs.utk.edu/quark/


Current work 
• Schedule task execution using 

                            Dynamic Runtime Systems 

 

48 cores 

POTRF, TRTRI and LAUUM. 

The matrix is 4000 x 4000,tile size is 200 x 200 



Dynamic MAGMA with QUARK 



Dynamic MAGMA with QUARK 



Dynamic MAGMA with QUARK 



Dynamic MAGMA with QUARK 



Dynamic MAGMA with QUARK 



Collaborators / Support 

• MAGMA [Matrix Algebra on GPU and 

Multicore Architectures] team  

http://icl.cs.utk.edu/magma/ 

• PLASMA [Parallel Linear Algebra for 

Scalable Multicore Architectures] 

team http://icl.cs.utk.edu/plasma 

• Collaborating partners 

– University of Tennessee, Knoxville 

– University of California, Berkeley 

– University of Colorado, Denver 

– INRIA, France 

– KAUST, Saudi Arabia 
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