
MAGMA:
 Development of High-Performance
 Linear Algebra

 for GPUs

J. Dongarra

Stan Tomov, I. Yamazaki, A. Haidar, M. Gates,
 P. Luszczek, H. Anzt, and T. Dong
University of Tennessee, Knoxville

Outline

• Methodology

• Dense linear system and eigen-problem solvers

• Multi-GPU algorithms

– Dynamic scheduling

– Distributed MAGMA

• MAGMA Batched

• Future Directions

November 2015: The TOP 10 Systems

Rank Site Computer Country Cores
Rmax

[Pflops]
% of
Peak

Power
[MW]

MFlops
/Watt

1
National Super

Computer Center in
Guangzhou

Tianhe-2 NUDT,
Xeon 12C + IntelXeon Phi (57c)

+ Custom
China 3,120,000 33.9 62 17.8 1905

2
DOE / OS

Oak Ridge Nat Lab

Titan, Cray XK7, AMD (16C) +
Nvidia Kepler GPU (14c) +

Custom
USA 560,640 17.6 65 8.3 2120

3
DOE / NNSA

L Livermore Nat Lab
Sequoia, BlueGene/Q (16c)

+ custom
USA 1,572,864 17.2 85 7.9 2063

4
RIKEN Advanced
Inst for Comp Sci

K computer Fujitsu SPARC64
VIIIfx (8c) + Custom

Japan 705,024 10.5 93 12.7 827

5
DOE / OS

Argonne Nat Lab
Mira, BlueGene/Q (16c)

+ Custom
USA 786,432 8.16 85 3.95 2066

6
DOE / NNSA /

Los Alamos & Sandia
Trinity, Cray XC40,Xeon 16C +

Custom
USA 301,056 8.10 80

7 Swiss CSCS
Piz Daint, Cray XC30, Xeon 8C +

Nvidia Kepler (14c) + Custom
Swiss 115,984 6.27 81 2.3 2726

8 HLRS Stuttgart
Hazel Hen, Cray XC40, Xeon

12C+ Custom
Germany 185,088 5.64 76

9 KAUST
Shaheen II, Cray XC40, Xeon

16C + Custom
Saudi
Arabia

196,608 5.54 77 2.8 1954

10
Texas Advanced
Computing Center

Stampede, Dell Intel (8c) + Intel
Xeon Phi (61c) + IB

USA 204,900 5.17 61 4.5 1489

500 (368) Karlsruher MEGAWARE Intel Germany 10,800 .206 95

0

10

20

30

40

50

60

70

80

90

100

S
y
st

e
m
s

Kepler/Phi (4)

Clearspeed (0)

PEZY-SC (2)

IBM Cell (0)

ATI Radeon (3)

Intel Xeon Phi (28)

NVIDIA (66)

Accelerators

PERFORMANCE SHARE OF

ACCELERATORS

0%

5%

10%

15%

20%

25%

30%

35%

40%

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Fr
ac

ti
o

n
 o

f
To

ta
l T

O
P

5
0

0

P
e

rf
o

rm
an

ce

Those new algorithms
 - have a very low granularity, they scale very well (multicore, petascale computing, …)
 - removes of dependencies among the tasks, (multicore, distributed computing)
 - avoid latency (distributed computing, out-of-core)
 - rely on fast kernels
 Those new algorithms need new kernels and rely on efficient scheduling algorithms.

 MAGMA

 Hybrid Algorithms

 (heterogeneity friendly)

Rely on

 - hybrid scheduler (of DAGs)

 - hybrid kernels

 (for nested parallelism)

 - existing software infrastructure

Next Generation of DLA Software

Key Features of MAGMA 1.7
HYBRID ALGORITHMS

MAGMA uses hybrid algorithms where the computation is split into tasks of

varying granularity and their execution scheduled over the hardware components.

Scheduling can be static or dynamic. In either case, small non-parallelizable tasks,

often on the critical path, are scheduled on the CPU, and larger more parallelizable

ones, often Level 3 BLAS, are scheduled on the MICs.

PERFORMANCE & ENERGY EFFICIENCY

7 / 60

MAGMA Libraries & Software
Stack

MAGMA with dynamic scheduling

single

multi

distr.

C P U GPU H Y B R I D

BLAS

BLAS

MAGMA BLAS, panels, auxiliary

LAPACK

CUDA

Support: Linux, Windows, Mac OS X; C/C++, Fortran; Matlab, Python

 MAGMA SPARSE (kernels, data formats, iterative & direct)

MAGMA 1.7 (Hybrid LAPACK)

StarPU run-time system PLASMA / Quark

 MAGMA 1.7 (Hybrid LAPACK)

Hybrid LAPACK/ScaLAPACK & Tile Algorithms

PaRSEC

8 / 60

Using MAGMA
• Support is provided through the MAGMA user forum

http://icl.cs.utk.edu/magma/forum/viewforum.php?f=2

10 / 60

http://icl.cs.utk.edu/magma/forum/viewforum.php?f=2

Using MAGMA
• Doxygen documentation

http://icl.cs.utk.edu/projectfiles/magma/doxygen/

11 / 60

http://icl.cs.utk.edu/magma/docs/

Methodology overview

• MAGMA uses hybridization methodology based on

– Representing linear algebra algorithms as collections

of tasks and data dependencies among them

– Properly scheduling tasks' execution over

multicore and GPU hardware components

• Successfully applied to fundamental

linear algebra algorithms

– One- and two-sided factorizations and solvers

– Iterative linear and eigensolvers

• Productivity

– 1) High level; 2) Leveraging prior developments; 3) Exceeding in performance homogeneous

solutions

Hybrid CPU+GPU algorithms
(small tasks for multicores and

large tasks for GPUs)

A methodology to use all available resources:

A Hybrid Algorithm Example
• Left-looking hybrid Cholesky factorization in MAGMA

• The difference with LAPACK – the 4 additional lines in red

• Line 8 (done on CPU) is overlapped with work on the GPU (from line 6)

Mixed precision iterative refinement

0

100

200

300

400

500

600

700

SP Solve

DP Solve (MP Iter.Ref.)

DP Solve

Matrix size

Keeneland

GPU M2090 (14 MP @1.3 GHz, peak 583 GFlop/s)

CPU Intel Xeon X5660@2.80GHz (2 x 6 cores)

Solving general dense linear systems using mixed precision iterative refinement

Mixed precision iterative refinement

Matrix size

Solving general dense linear systems using mixed precision iterative refinement

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2500 5000 7500 10000 12500 15000 17500 20000

CPOSV

ZCPOSV

ZPOSV

GPU TITAN X (3,072 CUDA cores @ 1.076 GHz)
 Z/C GEMM peak ~ 190 / 5,600 GFlop/s; Maxwell

CPU Intel Xeon X5660@2.80GHz (2 x 6 cores)

26 x

28 /

60

MultiGPU Support

• Data distribution

– 1-D block-cyclic distribution

• Algorithm

– GPU holding current panel

is sending it to CPU

– All updates are done in

parallel on the GPUs

– Look-ahead is done with GPU holding

the next panel

GPU

0
GPU

1
GPU

2

GPU

0 . . .

nb

0

100

200

300

400

500

600

700

800

900

1000

1 GPU

CPU (MKL)

LU on multiGPUs in DP

Matrix size

Keeneland

GPU M2090 (14 MP @1.3 GHz, peak 583 GFlop/s)

CPU Intel Xeon X5660@2.80GHz (2 x 6 cores)

0

100

200

300

400

500

600

700

800

900

1000

2 GPUs

1 GPU

CPU (MKL)

Matrix size

Keeneland

GPU M2090 (14 MP @1.3 GHz, peak 583 GFlop/s)

CPU Intel Xeon X5660@2.80GHz (2 x 6 cores)

LU on multiGPUs in DP

0

100

200

300

400

500

600

700

800

900

1000
3 GPUs

2 GPUs

1 GPU

CPU (MKL)

Matrix size

Keeneland

GPU M2090 (14 MP @1.3 GHz, peak 583 GFlop/s)

CPU Intel Xeon X5660@2.80GHz (2 x 6 cores)

LU on multiGPUs in DP

0

100

200

300

400

500

600

700

800

900

1000
Kepler (K20X)

3 GPUs

2 GPUs

1 GPU

CPU (MKL)

LU on Kepler in DP

Matrix size

Keeneland

GPU M2090 (14 MP @1.3 GHz, peak 583 GFlop/s)

CPU Intel Xeon X5660@2.80GHz (2 x 6 cores)

Density Functional Theory

21 / 32

Many-body Schrödinger equation (exact but exponential scaling)

In modern electronic structure methods (density functional theory)

this is reduced to the Kohn-Sham equation

(single particle method with polynomial complexity)

The potential V depends on Ψi, so the equation must be solved many times until convergence:

• Introduce a basis ϕi for the orbitals Ψ

• The Hamiltonian is a Hermitian matrix

• The basis may not be orthonormal

• Solve the generalized eigenvalue problem H x = ε S x

Hi, j = fi(r) -
1

2
Ñ2 +V(r, r)

æ

è
ç

ö

ø
÷f j (r)drò

Si, j = fi(r)f j (r)drò

Eigenproblem Solvers in MAGMA

• A x = λ x
– Quantum mechanics (Schrödinger equation)

– Quantum chemistry

– Principal component analysis (in data mining)

– Vibration analysis (of mechanical structures)

– Image processing, compression, face recognition

– Eigenvalues of graph, e.g., in Google’s page rank

 . . .

• Need to solve it fast

Current MAGMA results:

 MAGMA with 1 GPU can be 12x faster vs. vendor libraries on state-of-art multicore systems
T. Dong, J. Dongarra, S. Tomov, I. Yamazaki, T. Schulthess, and R. Solca, Symmetric dense matrix-vector multiplication on multiple GPUs

and its application to symmetric dense and sparse eigenvalue problems, ICL Technical report, 03/2012.

J. Dongarra, A. Haidar, T. Schulthess, R. Solca, and S. Tomov, A novel hybrid CPU- GPU generalized eigensolver for electronic structure
calculations based on fine grained memory aware tasks, ICL Technical report, 03/2012.

Distributed memory systems
Generalized Hermitian Definite eigensolvers
with Thomas Schulthess et al. [1], CSCS

23 / 32

[1] R. Solca, A. Kozhevnikov, A. Haidar, S. Tomov, T. Schulthess, and J. Dongarra, Efficient implementation of quantum material

 simulations on distributed CPU-GPU systems. SC’15, Best Paper Award finalist, Austin, TX, November 15-20, 2015.

• Generalized Hermitian definite eigenproblem of the form

 H x = ε S x

• Solution follows the following steps
1) Compute the Cholesky factorization of

 S = L LH

2) Transform the generalized eigenproblem to standard form

 Ĥ z = λ z, Ĥ = L-1 H L-H

3) Solve the standard eigenproblem

 Ĥ = Z Λ ZH

4) Back-solve the eigenvectors with the Cholesky factor

 X = L-H Z

• R. Solca, A. Kozhevnikov, A. Haidar, S. Tomov, T. Schulthess, and J. Dongarra, Efficient implementation of quantum material

 simulations on distributed CPU-GPU systems. SC’15, Best Paper Award finalist, Austin, TX, November 15-20, 2015.

• A. Haidar, S. Tomov, J. Dongarra, T. Schulthess, and R. Solca,

 A novel hybrid CPU-GPU generalized eigensolver for electronic structure calculations based on fine grained memory aware tasks,

 International Journal of High Performance Computing Applications , vol. 28, no 2, pp. 196—209, May 2014.

• A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. Leading edge multi-GPU algorithms for generalized eigenproblems for

electronic structure calculations. International Supercomputing Conference IEEE-ISC 2013.

MAGMA is 1.5 times faster than CPU

MAGMA is 2 times more energy efficient

Piz Daint

Cray XC30:

• 8-core Intel Xeon E5-

2670 Sandy Bridge socket

• Nvidia K20X

Setup H20 Solve HC=4OC The rest total

392 CPU nodes

ScaLAPACK
463.7 3839.7 61.6 4365.0

392 CPU nodes

ELPA
471.7 1199.3 60.7 1731.7

192 CPU+GPU

nodes

MAGMA

166.7 911.9 79.9 1158.5

Distributed memory systems
Generalized Hermitian Definite eigensolvers: performance results

24 / 32

Motivation

25 / 35

Linear Algebra on small problems

are needed in many applications:

Without MAGMA Batched with MAGMA Batched

Large matrices

• Machine learning,

• Data mining,

• High-order FEM,

• Numerical LA,

• Graph analysis,

• Neuroscience,

• Astrophysics,

• Quantum chemistry,

• Multi-physics problems,

• Signal processing,

and more

Expected

acceleration

ranges

 Batched vs. standard LA techniques
 Batched

(for small problems)

 Standard

(for large problems)

Basic Linear Algebra

Subprograms (BLAS)

Batched BLAS

(no scheduling overheads)

 Vendor optimized BLAS

(e.g., CUBLAS, Intel MKL)

 Advanced routines:

• Linear system solvers

• Eigensolvers & SVD

• Built on Batched BLAS

• GPU-only (no comm.)

• Batch-aware algorithms

• Batch-scheduled

• Built on BLAS

• Hybrid CPU + GPU

• High-level algorithms

• DAG scheduling

26

LA problems

Techniques

small 128

>5x

>10x

small 128

Motivation …

26 / 35

Examples

27 / 35

Code Gen erat i on
C++11 features will be used as much as possible. Additional

needs will be handled by defining a domain specific embedded

language (DSEL). This technique is used in C++ to take advantage

of DSL features while using the optimizations provided by a

standard compiler. It will handle the generation of versions (index

reordering, next) to be empirically evaluated and be part of the

autotuning framework.

Aut ot un in g
We are developing fixed-size gemm kernels for GPUs, Xeon Phi,

and multicore (see Figure on Right for a single core intel Xeon E5-

2620 and K40) through an autotuning framework. A number of

generic versions are developed and parametrized for

performance. The parameters are autotuned (empirically) to find

“best” kernels for specific size.

Ten sor operat i on s i n h igh - order FEM
Consider the FE mass matrix ME for an element/ zone E with

weight ρ, as a 2-dimensional tensor:

i, j = 1,..., nd , where

Take the nq x nd matrix and

Then, , or omitting the E subscript

 .

Using FE of order p, we have nd = O(pd) and nq = O(pd), so B is

dense O(pd) x O(pd) matrix.

If the FE basis and the quadrature rule have tensor product

structure, we can decompose dofs and quadrature point indices in

logical coordinate axes

 i = (i
1
, …, i

d
), j = (j

1
, …, j

d
), k = (k

1
, …, k

d
)

so M
ij
 can be viewed as 2d-dimensional tensor M

i1, …, id, j1, …, jd
.

Sum m ary of k ern els n eeded:
● Assembly of M, referred as equations (1) & (2) below

● Evaluations of M times V, referred as equations (3) & (4) below

Tow ards a H igh - Per f orm an ce Ten sor Algebra Pack age f or Accelerat ors

M. Baboul in , V. Dobrev, J. Dongar ra, C. Ear l , J. Falcou, A. Haidar , I . Kar l in , T. Kolev, I . Masl iah , and S. Tom ov

Abst ract
Numerous important applications, e.g., high-order FEM

simulations, can be expressed through tensors. Examples are

computation of FE matrices and SpMV products expressed as

generalized tensor contractions. Contractions by the first index

can often be represented as tensor index reordering plus gemm,

which is a key factor to achieve high-performance. We present

ongoing work on the design of a high-performance package in

MAGMA for Tensor algebra that includes techniques to organize

tensor contractions, data storage, and parametrization related to

batched execution of large number of small tensor contractions.

We apply auto-tuning and code generation techniques to provide

an architecture-aware, user-friendly interface.

M ot i vat ion
Numerous important applications can be expressed through

tensors:

● High-order FEM simulations

● Signal Processing

● Numerical Linear Algebra

● Numerical Analysis

The goal is to design a:

● High-performance package for Tensor algebra

● Built-in architecture-awareness (GPU, Xeon Phi, multicore)

● User-friendly interface

Exam ple cases

Numerical linear algebra:

● A 4-dimensional tensor contraction

● rank-k update on matrices in tile format (k can be small, e.g.,

sub-vector/warp size)

● Must determine (in software) if possible to do it through

batched GEMM kernels

[1] V. Dobrev, T.Kolev, R.Rieben. High order curvilinear finite element methods for Lagrangian

hydrodynamics. SIAM J.Sci.Comp.34(5), B606–B641. (36 pages)

APPROACH AND RESULTS

User - f r i en dly in t er f ace

To provide various interfaces, including one using C++11.

Top level design to provide features similar to the

mshadow library. https:/ / github.com/dmlc/mshadow

In dex reorder in g/ reshape
If we store tensors as column-wise 1D arrays,

, i.e., M can be interpreted as a 4th order tensor, a nd x nd matrix, or

a vector of size nd2, without changing the storage. We can define

as long as n
1
...n

r
 = m

1
…m

q
 and for every

i
1..r

, j
1..q

i
1
+ n

1
i
2
+ … + n

1
n

2
...n

r-1
i
r
 = j

1
+ m

1
j
2
+ … + m

1
m

2
…m

q-1
j
q
.

Contractions can be implemented as a sequence of pairwise

contractions. There is enough complexity here to search for

something better: code generation, index reordering, and

autotuning will be used, e.g., contractions (3a) - (4f) can be

implemented as tensor index-reordering plus gemm A, B -> ATB.

 // Our current interface :

 // create a 2 x 5 x 2 float tensor , default locality is cpu using std::vector as default backend for data

 Tensor<2,5,2> ts;

 // create a 2 x 5 x 2 tensor on the gpu using thrust as the default backend for data

 Tensor<2,5,5,gpu_> d_ts;

 // Call a thrust function to set values to 9

 thrust::fill(d_ts.begin() , d_ts.end() , 9);

 // Send back values to the cpu tensor

 ts = d_ts ;

 // Reorder the 2 x 5 x 2 tensor to a matrix 2 x 10 using views

 view<2,10> mat = ts ;

● Data Mining

● Deep Learning

● Graph Analysis

● Neuroscience and more

Bat ched LA
Tensor contractions are transformed through reshapes to batched LA operations, many of which available in MAGMA[2] http:/ / icl.cs.utk.

edu/magma/ (including LU, QR, Cholesky, GEMM, GEMV, TRSM, SYRK).

[2] A.Haidar, T.Dong, S.Tomov, P.Luszczek, and J.Dongarra. A framework for batched and GPU-resident factorization algorithms applied to block Householder transformations. ISC High Performance 2015, Frankfurt,

Germany, July 12-16, 2015.

Con clusion s an d Fut ure di rect i on s
● High-performance package on Tensor Algebra has the potential for high-impact on a number of important applications

● Multidisciplinary effort

● Current results show promising performance, where various components will be leveraged from autotuning MAGMA Batched linear

algebra kernels, and BLAST from LLNL

● This is an ongoing work

Figure:

Batched dgemms on K40 GPU.

Batch count is 2,000.

MAGMA exceeds in performance

CUBLAS for “small” sizes, currently

tuned for above 32. Current work is

concentrated on kernels for fixed

smaller (sub-warp) sizes.

Gatlinburg, Tennessee, Aug 31- Sept 2, 2015

http://computing.ornl.gov/workshops/SMC15/
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

LLNL release number LLNL-POST-676632

ICL's work on this material was supported by the National Science Foundation under Grant ACI-1339822, the Department of Energy, and NVIDIA.

Need of Tensor contractions

for FEM simulations
[collaboration with LLNL on BLAST package and Inria, France]

Code Gen erat i on
C++11 features will be used as much as possible. Additional

needs will be handled by defining a domain specific embedded

language (DSEL). This technique is used in C++ to take advantage

of DSL features while using the optimizations provided by a

standard compiler. It will handle the generation of versions (index

reordering, next) to be empirically evaluated and be part of the

autotuning framework.

Aut ot un in g
We are developing fixed-size gemm kernels for GPUs, Xeon Phi,

and multicore (see Figure on Right for a single core intel Xeon E5-

2620 and K40) through an autotuning framework. A number of

generic versions are developed and parametrized for

performance. The parameters are autotuned (empirically) to find

“best” kernels for specific size.

Ten sor operat i on s i n h igh - order FEM
Consider the FE mass matrix ME for an element/ zone E with

weight ρ, as a 2-dimensional tensor:

i, j = 1,..., nd , where

Take the nq x nd matrix and

Then, , or omitting the E subscript

 .

Using FE of order p, we have nd = O(pd) and nq = O(pd), so B is

dense O(pd) x O(pd) matrix.

If the FE basis and the quadrature rule have tensor product

structure, we can decompose dofs and quadrature point indices in

logical coordinate axes

 i = (i
1
, …, i

d
), j = (j

1
, …, j

d
), k = (k

1
, …, k

d
)

so M
ij
 can be viewed as 2d-dimensional tensor M

i1, …, id, j1, …, jd
.

Sum m ary of k ern el s n eeded:
● Assembly of M, referred as equations (1) & (2) below

● Evaluations of M times V, referred as equations (3) & (4) below

Tow ards a H igh - Per f orm an ce Ten sor Algebra Pack age f or Accelerat ors

M. Baboul in , V. Dobrev, J. Dongar ra, C. Ear l , J. Falcou, A. Haidar , I . Kar l in , T. Kolev, I . Masl iah , and S. Tom ov

Abst ract
Numerous important applications, e.g., high-order FEM

simulations, can be expressed through tensors. Examples are

computation of FE matrices and SpMV products expressed as

generalized tensor contractions. Contractions by the first index

can often be represented as tensor index reordering plus gemm,

which is a key factor to achieve high-performance. We present

ongoing work on the design of a high-performance package in

MAGMA for Tensor algebra that includes techniques to organize

tensor contractions, data storage, and parametrization related to

batched execution of large number of small tensor contractions.

We apply auto-tuning and code generation techniques to provide

an architecture-aware, user-friendly interface.

M ot i vat i on
Numerous important applications can be expressed through

tensors:

● High-order FEM simulations

● Signal Processing

● Numerical Linear Algebra

● Numerical Analysis

The goal is to design a:

● High-performance package for Tensor algebra

● Built-in architecture-awareness (GPU, Xeon Phi, multicore)

● User-friendly interface

Exam ple cases

Numerical linear algebra:

● A 4-dimensional tensor contraction

● rank-k update on matrices in tile format (k can be small, e.g.,

sub-vector/warp size)

● Must determine (in software) if possible to do it through

batched GEMM kernels

[1] V. Dobrev, T.Kolev, R.Rieben. High order curvilinear finite element methods for Lagrangian

hydrodynamics. SIAM J.Sci.Comp.34(5), B606–B641. (36 pages)

APPROACH AND RESULTS

User - f r i en dl y i n t er f ace

To provide various interfaces, including one using C++11.

Top level design to provide features similar to the

mshadow library. https:/ / github.com/dmlc/mshadow

In dex reorder in g/ reshape
If we store tensors as column-wise 1D arrays,

, i.e., M can be interpreted as a 4th order tensor, a nd x nd matrix, or

a vector of size nd2, without changing the storage. We can define

as long as n
1
...n

r
 = m

1
…m

q
 and for every

i
1..r

, j
1..q

i
1
+ n

1
i
2
+ … + n

1
n

2
...n

r-1
i
r
 = j

1
+ m

1
j
2
+ … + m

1
m

2
…m

q-1
j
q
.

Contractions can be implemented as a sequence of pairwise

contractions. There is enough complexity here to search for

something better: code generation, index reordering, and

autotuning will be used, e.g., contractions (3a) - (4f) can be

implemented as tensor index-reordering plus gemm A, B -> ATB.

 // Our current interface :

 // create a 2 x 5 x 2 float tensor , default locality is cpu using std::vector as default backend for data

 Tensor<2,5,2> ts;

 // create a 2 x 5 x 2 tensor on the gpu using thrust as the default backend for data

 Tensor<2,5,5,gpu_> d_ts;

 // Call a thrust function to set values to 9

 thrust::fill(d_ts.begin() , d_ts.end() , 9);

 // Send back values to the cpu tensor

 ts = d_ts ;

 // Reorder the 2 x 5 x 2 tensor to a matrix 2 x 10 using views

 view<2,10> mat = ts ;

● Data Mining

● Deep Learning

● Graph Analysis

● Neuroscience and more

Bat ched LA
Tensor contractions are transformed through reshapes to batched LA operations, many of which available in MAGMA[2] http:/ / icl.cs.utk.

edu/magma/ (including LU, QR, Cholesky, GEMM, GEMV, TRSM, SYRK).

[2] A.Haidar, T.Dong, S.Tomov, P.Luszczek, and J.Dongarra. A framework for batched and GPU-resident factorization algorithms applied to block Householder transformations. ISC High Performance 2015, Frankfurt,

Germany, July 12-16, 2015.

Con clusion s an d Fut ure di rect i on s
● High-performance package on Tensor Algebra has the potential for high-impact on a number of important applications

● Multidisciplinary effort

● Current results show promising performance, where various components will be leveraged from autotuning MAGMA Batched linear

algebra kernels, and BLAST from LLNL

● This is an ongoing work

Figure:

Batched dgemms on K40 GPU.

Batch count is 2,000.

MAGMA exceeds in performance

CUBLAS for “small” sizes, currently

tuned for above 32. Current work is

concentrated on kernels for fixed

smaller (sub-warp) sizes.

Gatlinburg, Tennessee, Aug 31- Sept 2, 2015

http://computing.ornl.gov/workshops/SMC15/
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

LLNL release number LLNL-POST-676632

ICL's work on this material was supported by the National Science Foundation under Grant ACI-1339822, the Department of Energy, and NVIDIA.

• Contractions can often be implemented as index reordering

plus batched GEMM (and hence, be highly efficient)

Examples

28 / 35

Need of Batched routines for Numerical LA
[e.g., sparse direct multifrontal methods, preconditioners for sparse iterative methods, tiled algorithms in dense linear algebra, etc.;]

 LU, QR, or Cholesky

on small diagonal matrices

Sparse / Dense Matrix

System

 TRSMs, QRs, or LUs

 TRSMs, TRMMs

 Updates (Schur complement)

GEMMs, SYRKs, TRMMs

DAG-based factorization
To capture main LA patterns needed in a

numerical library for Batched LA

• Example matrix from Quantum chromodynamics

• Reordered and ready for sparse direct multifrontal solver

• Diagonal blocks can be handled in parallel through batched

LU, QR, or Cholesky factorizations

Convolution operation:

• For every filter Fn and every channel, the computation for every

pixel value On,k is a tensor contraction:

• Plenty of parallelism; small operations that must be batched

• With data “reshape” the computation can be transformed

into a batched GEMM (and hence, efficiently implemented;

among other approaches)

Examples

29 / 35

Need of Batched and/or Tensor contraction routines in machine learning

Dk

e.g., Convolutional Neural Networks (CNNs) used in computer vision

 Key computation is convolution of Filter Fi (feature detector) and input image D (data):

Filters F

Data D

Fn

 On

n,kO

n,kO =
k,iD

i

å n,iF

Output O

Examples

30 / 35

Multi-physics problems need Batched LA on small problems

• Many physical systems can be modeled by a fluid dynamics plus kinetic approximation

e.g., in astrophysics, stiff equations must be integrated numerically:

• Implicitly; standard approach, leading to need of batched solvers (e.g., as in XNet library)

• Explicitly; a new way to stabilize them with Macro- plus Microscopic equilibration

 need batched tensor contractions of variable sizes

Collaboration with ORNL and UTK physics department (Mike Guidry, Jay Billings, Ben Brock, Daniel Shyles, Andrew Belt)

Explicit vs. Implicit speedup on single network

10x speedup on few hundred species

(few hundred dof batched solve in implicit methods)

Additional acceleration achieved through MAGMA Batched

An additional 7x speedup over initially highly

optimized explicit method implementation

Collaborators and Support

MAGMA team

http://icl.cs.utk.edu/magma

PLASMA team

http://icl.cs.utk.edu/plasma

Collaborating partners

University of Tennessee, Knoxville
University of California, Berkeley
University of Colorado, Denver
INRIA, France (StarPU team)
KAUST, Saudi Arabia

 Characteristics
• Blas-2 GEMV moved to the GPU,

• Accelerate the algorithm by doing all BLAS-3 on GPU,

• Bulk sync phases,

• Memory bound algorithm.

Keeneland system, using one node

3 NVIDIA GPUs (M2090@ 1.1 GHz, 5.4 GB)

2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB)

flops formula: n3/3*time

Higher is faster

 A. Haidar, S. Tomov, J. Dongarra, T. Schulthess, and R. Solca, A novel hybrid
CPU-GPU generalized eigensolver for electronic structure calculations based on
fine grained memory aware tasks, ICL Technical report, 03/2012.

Toward fast Eigensolvers

first

stage

second

stage

 A. Haidar, S. Tomov, J. Dongarra, T. Schulthess, and R. Solca, A novel hybrid

CPU-GPU generalized eigensolver for electronic structure calculations based on
fine grained memory aware tasks, ICL Technical report, 03/2012.

 Characteristics
• Stage 1: BLAS-3, increasing computational intensity,

• Stage 2: BLAS-1.5, new cache friendly kernel,

• 4X/12X faster than standard approach,

• Bottelneck: if all Eigenvectors are required, it has 1 back

transformation extra cost.

Keeneland system, using one node

3 NVIDIA GPUs (M2090@ 1.1 GHz, 5.4 GB)

2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB)

flops formula: n3/3*time

Higher is faster

Acceleration w/ 3 GPUs:

15 X vs. 12 Intel cores

Toward fast Eigensolvers

Current work
High-productivity w/ Dynamic Runtime Systems

From Sequential Nested-Loop Code to Parallel Execution

for (k = 0; k < min(MT, NT); k++){

 zgeqrt(A[k;k], ...);

 for (n = k+1; n < NT; n++)

 zunmqr(A[k;k], A[k;n], ...);

 for (m = k+1; m < MT; m++){

 ztsqrt(A[k;k],,A[m;k], ...);

 for (n = k+1; n < NT; n++)

 ztsmqr(A[m;k], A[k;n], A[m;n], ...);

 }

}

Current work
High-productivity w/ Dynamic Runtime Systems

From Sequential Nested-Loop Code to Parallel Execution

for (k = 0; k < min(MT, NT); k++){

 Insert_Task(&cl_zgeqrt, k , k, ...);

 for (n = k+1; n < NT; n++)

 Insert_Task(&cl_zunmqr, k, n, ...);

 for (m = k+1; m < MT; m++){

 Insert_Task(&cl_ztsqrt, m, k, ...);

 for (n = k+1; n < NT; n++)

 Insert_Task(&cl_ztsmqr, m, n, k, ...);

 }

}

Various runtime systems can be used:

• StarPUhttp://icl.cs.utk.edu/projectsdev/m

orse

• PaRSEC
https://icl.cs.utk.edu/parsec/

• QUARK
http://icl.cs.utk.edu/quark/

http://icl.cs.utk.edu/projectsdev/morse
http://icl.cs.utk.edu/projectsdev/morse
https://icl.cs.utk.edu/parsec/
http://icl.cs.utk.edu/quark/

Current work
• Schedule task execution using

 Dynamic Runtime Systems

48 cores

POTRF, TRTRI and LAUUM.

The matrix is 4000 x 4000,tile size is 200 x 200

Dynamic MAGMA with QUARK

Dynamic MAGMA with QUARK

Dynamic MAGMA with QUARK

Dynamic MAGMA with QUARK

Dynamic MAGMA with QUARK

Collaborators / Support

• MAGMA [Matrix Algebra on GPU and

Multicore Architectures] team

http://icl.cs.utk.edu/magma/

• PLASMA [Parallel Linear Algebra for

Scalable Multicore Architectures]

team http://icl.cs.utk.edu/plasma

• Collaborating partners

– University of Tennessee, Knoxville

– University of California, Berkeley

– University of Colorado, Denver

– INRIA, France

– KAUST, Saudi Arabia

http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/plasma
http://icl.cs.utk.edu/plasma
http://icl.cs.utk.edu/plasma

