Paul Shapiro The University of Texas at Austin

Collaborators in the new work described today include:

 Pierre Ocvirk³, Dominique Aubert³, Nicolas Gillet³, Ilian Iliev², Romain Teyssier⁴, Gustavo Yepes⁵, Stefan Gottloeber⁶,
 Junhwan Choi¹, Hyunbae Park¹, Anson D'Aloisio¹, David Sullivan², Yehuda Hoffman⁷, Alexander Knebe⁵, Timothy Stranex⁴
 (1)U Texas at Austin (2)U Sussex (3)U Strasbourg (4) U Zurich (5) U Madrid (6) AIP Potsdam (7) Hebrew U

> *SC15* Austin, Texas, November 18, 2015

Intergalactic H atoms scattered light from distant quasars \rightarrow quasar absorption spectra sample the intervening neutral H atoms

SDSS quasars show Lyman α opacity of intergalactic medium rises with increasing redshift at $z = 6 \rightarrow$ IGM more neutral \rightarrow reionization just ending?

<u>ک</u>

Fan et al (2005) SDSS quasars show Lyman α opacity of intergalactic medium rises with increasing redshift at $z = 6 \rightarrow$ IGM more neutral \rightarrow reionization just ending?

Z_{abs}

The Epoch of Reionization

Absorption spectra of quasars have long shown that the intergalactic medium at redshifts z < 6 is highly ionized, with a residual neutral H atom concentration of less than 1 atom in 10⁴.

===> universe experienced an "epoch of reionization" before this.

Sloan Digital Sky Survey quasars have been observed at z > 6 whose absorption spectra show dramatic increase in the H I fraction at this epoch as we look back in time.
 ===> epoch of reionization only just ended at z ≥ 6.

WMAP satellite mapped the pattern of polarization of the cosmic microwave background radiation across the sky $\leftarrow \rightarrow$ light was scattered as it travelled across the universe, by intergalactic electrons

Planck satellite mapped the pattern of polarization of the cosmic microwave background radiation across the sky $\leftarrow \rightarrow$ light was scattered as it travelled across the universe, by intergalactic electrons

→ PLANCK'S POLARISATION OF THE COSMIC MICROWAVE BACKGROUND

Filtered at 5 degrees

Full sky map Filtered at 5 degrees

Filtered at 20 arcminutes

The Epoch of Reionization

Absorption spectra of quasars have long shown that the intergalactic medium at redshifts z < 6 is highly ionized, with a residual neutral H atom concentration of less than 1 atom in 10⁴.

===> universe experienced an "epoch of reionization" before this.

- Sloan Digital Sky Survey quasars have been observed at z > 6 whose absorption spectra show dramatic increase in the H I fraction at this epoch as we look back in time.
 ===> epoch of reionization only just ended at z ≥ 6.
- The cosmic microwave background (CMB) exhibits polarization which fluctuates on large angular scales; *Planck* finds that almost 7% of the CMB photons were scattered by free electrons in the IGM, but only 4% could have been scattered by the IGM at z < 6.

===> IGM must have been ionized earlier than z = 6 to supply enough electron scattering optical depth

===> reionization already substantial by z ≥ 9

Structure formation in ΛCDM at z = 10

simulation volume = (100 h⁻¹Mpc)³, comoving

1624³ particles on 3248³ cells

Projection of cloud-in-cell densities of 20 Mpc slice

A Dwarf Galaxy Turns on at z=9

A Dwarf Galaxy Turns on at z=9

Self-Regulated Reionization

Iliev, Mellema, Shapiro, & Pen (2007), MNRAS, 376, 534; (astro-ph/0607517)

Jeans-mass filtering →
 low-mass source halos
 (M < 10⁹ M_{solar}) cannot form
 inside H II regions ;

•50 Mpc box, 406^3 radiative transfer simulation, WMAP3, $f_{\gamma} = 250;$

•resolved all halos with $M > 10^8 M_{solar}$ (i.e. all atomically-cooling halos), (blue dots = source cells);

Self-Regulated Reionization

Iliev, Mellema, Shapiro, & Pen (2007), MNRAS, 376, 534; (astro-ph/0607517)

Jeans-mass filtering →
 low-mass source halos
 (M < 10⁹ M_{solar}) cannot form
 inside H II regions ;

•35/h Mpc box, 406^3 radiative transfer simulation, WMAP3, $f_{\gamma} = 250;$

•resolved all halos with $M > 10^8 M_{solar}$ (i.e. all atomically-cooling halos), (blue dots = source cells);

Large-scale, self-regulated reionization by atomic-cooling halos

Three generations of simulation

Large-scale, self-regulated reionization by atomic-cooling halos

Reionization of the/Universe

Paul Shapiro The University of Texas at Austin

Part II

Collaborators in the new work described today include:

 Pierre Ocvirk³, Dominique Aubert³, Nicolas Gillet³, Ilian Iliev², Romain Teyssier⁴, Gustavo Yepes⁵, Stefan Gottloeber⁶,
 Junhwan Choi¹, Hyunbae Park¹, Anson D'Aloisio¹, David Sullivan², Yehuda Hoffman⁷, Alexander Knebe⁵, Timothy Stranex⁴
 (1)U Texas at Austin (2)U Sussex (3)U Strasbourg (4) U Zurich (5) U Madrid (6) AIP Potsdam (7) Hebrew U

> *SC15* Austin, Texas, November 18, 2015

Shapiro, Ocvirk, Aubert, Iliev, Teyssier, Gillet, Yepes, Gottloeber, Choi, Park, D'Aloisio, Sullivan +

Q: Did reionization leave an imprint on the Local Group galaxies we can observe today?

Q: Does reionization help explain why the observed number of dwarf galaxies in the Local Group is far smaller than the number of small halos predicted by Λ CDM N-body simulations?

Q: Was the Local Group ionized from within or without?

A: Simulate the coupled radiationhydro-N-body problem of reionization → galaxy formation with ionization fronts that swept across the IGM in the first billion years of cosmic time, in a volume 91 Mpc on a side centered on the Local Group.

Introducing the CoDa (COsmic DAwn) Simulation: Reionization of the Local Universe with Fully-Coupled Radiation + Hydro + N-body Dynamics

Shapiro, Ocvirk, Aubert, Iliev, Teyssier, Gillet, Yepes, Gottloeber, Choi, Park, D'Aloisio, Sullivan +

What makes this possible now?

- 1) Initial Conditions:
- Start from "constrained realization" of Gaussianrandom-noise initial conditions, provided by our collaborators in the *CLUES* (Constrained Local UniversE Simulations) consortium
- This reproduces observed features of our local Universe, including the Local Group and nearby galaxy clusters.
- Add higher frequency modes for small-scale structure

H.Courtois and D.Pomarède, 2012 Univ Lyon - CEA/Irfu

H.Courtois and D.Pomarède, 2012 Univ Lyon - CEA/Irfu

Shapiro, Ocvirk, Aubert, Iliev, Teyssier, Gillet, Yepes, Gottloeber, Choi, Park, D'Aloisio, Sullivan +

What makes this possible now?

2) <u>New Hybrid (CPU + GPU) numerical method + New Hybrid (CPU + GPU) supercomputer</u>

N-body + Hydro = **RAMSES** (Teyssier 2002)

- Gravity solver is Particle Mesh code with Multi-Grid Poisson solver
- Hydro solver is shock-capturing, second-order Godunov scheme on Eulerian grid

Radiative Transfer + Ionization Rate Solver = **ATON** (Aubert & Teyssier 2008)

- RT is by a moment method with M1 closure
- Explicit time integration, time-step size limited by CFL condition \rightarrow

 $\Delta t < \Delta x / c ,$ where c = speed of light

ATON \rightarrow (**ATON**) **x** (**GPU**s) = **CUDATON** (Aubert & Teyssier 2010) •GPU acceleration by factor ~ 100

RAMSES + **CUDATON** = **RAMSES-CUDATON**

•RT on the GPUs @ CFL condition set by speed of light

- •(hydro + gravity) on the CPUs @ CFL condition set by sound speed
- (# RT steps)/(# hydro-gravity steps) > 1000 will not slow hydro-gravity calculation

Shapiro, Ocvirk, Aubert, Iliev, Teyssier, Gillet, Yepes, Gottloeber, Choi, Park, D'Aloisio, Sullivan +

TITAN by the numbers:

- 20 Petaflops peak
- 18,688 compute nodes
- 299,008 cores
- Each node consists of an AMD 16-Core Opteron 6200 Series processor and an NVIDIA Tesla K20 GPU Accelerator
- Gemini interconnect

Introducing the CoDa (COsmic DAwn) Simulation: Reionization of the Local Universe with Fully-Coupled Radiation + Hydro + N-body Dynamics

Shapiro, Ocvirk, Aubert, Iliev, Teyssier, Gillet, Yepes, Gottloeber, Choi, Park, D'Aloisio, Sullivan +

RAMSES-CUDATON simulation

- Box size = 91 cMpc
- Grid size = $(4096)^3$ cells, $\Delta x \sim 20$ cKpc
- N-body particles = $(4096)^3 \sim 64$ billion
- Min halo mass ~ 10⁸ M_solar ~300 particles

TITAN Supercomputer requirements

- # steps/run = 2000 CPU (+800,000 GPU)
- # CPU cores (+ # GPUs) = 131,072 (+ 8192)
- # CPU hrs = 2.1 million node hrs ~ 11 days
- Largest fully-coupled radiation-hydro simulation to-date of the reionization of the Local Universe.
- Large enough volume to simulate global reionization and its impact on the Local Group simultaneously, while resolving the masses of dwarf satellites of the MW and M31.

Shapiro, Ocvirk, Aubert, Iliev, Teyssier, Gillet, Yepes, Gottloeber, Choi, Park, D'Aloisio, Sullivan +

RAMSES-CUDATON simulation

- Box size = 91 cMpc
- Grid size = $(4096)^3$ cells, $\Delta x \sim 20$ cKpc
- N-body particles = $(4096)^3 \sim 64$ billion
- Min halo mass ~ 10^8 M_solar ~ 300 parts

TITAN Supercomputer requirements

- # steps/run = 2000 CPU (+800,000 GPU)
- # CPU cores (+ # GPUs) = 131,072 (+ 8192)
- # CPU hrs = 2.1 million node hrs ~ 11 days

- (left) the local cosmic web in the atomic gas ;
- (middle) red regions denote very hot, supernova-powered superbubbles, while yellow-orange regions show the long-range impact of photo-heating by starlight;
- (right) ionized hydrogen fraction [dark red (dark blue) = ionized (neutral)].

TEST RUN: 11 cMpc box: a spatial slice

Shapiro, Ocvirk, Aubert, Iliev, Teyssier, Gillet, Yepes, Gottloeber, Choi, Park, D'Aloisio, Sullivan +

Ionization Field

Ionizing Radiation Mean Intensity J

-27.60

Ionizing Radiation Mean Intensity J

- Box size = 91cMpc
- Grid size = • $(4096)^3$ cells
- N-body particles • $=(4096)^3$
- Min halo mass ~ • 10⁸ solar masses

FULL-SIZED RUN: 91 cMpc box: a spatial slice; @ $z \sim 6$, with $x \sim$ 50%

log10(temperature)

- Box size = 91 cMpc
- Grid size = $(4096)^3$ cells
- N-body particles = $(4096)^3$
- Min halo mass ~ 10⁸ solar masses

FULL-SIZED RUN: 91 cMpc box: a spatial slice; @ z ~ 6, with x ~ 50%

Zoom-in x 4

log10(temperature)

- Box size = 91 cMpc
- Grid size = $(4096)^3$ cells
- N-body particles = $(4096)^3$
- Min halo mass ~ 10⁸ solar masses

FULL-SIZED RUN: 91 cMpc box: a spatial slice; @ z ~ 6, with x ~ 50%

Zoom-in x 16

log10(temperature)

- Box size = 91 cMpc
- Grid size = $(4096)^3$ cells
- N-body particles = $(4096)^3$
- Min halo mass ~ 10⁸ solar masses

FULL-SIZED RUN: 91 cMpc box: a spatial slice; @ z ~ 6, with x ~ 50%

Zoom-in x 32

log10(temperature)

- Box size = 91 cMpc
- Grid size = $(4096)^3$ cells
- N-body particles = $(4096)^3$
- Min halo mass ~ 10⁸ solar masses

FULL-SIZED RUN: 91 cMpc box: a spatial slice; @ z ~ 6, with x ~ 50%

Zoom-in x 64

log10(temperature)

Zoom-In $(4 h^{-1} cMpc)^3$ Subvolume = (full simulation volume/4096)

Selected Cut-out

RAMSES-

CUDATON

simulation

- Box size = 91 cMpc
- Grid size = $(4096)^3$ cells
- N-body particles = $(4096)^3$
- Min halo mass ~ 10⁸ solar masses

ZOOM-IN ON THE LOCAL GROUP AT Z = 0

Zoom-In $(4 h^{-1} cMpc)^3$ Subvolume = (full simulation volume/4096)

Selected Cut-out

RAMSES-CUDATON

- simulation
- Box size = 91 cMpc
- Grid size = $(4096)^3$ cells
- N-body particles = $(4096)^3$
- Min halo mass ~ 10⁸ solar masses

ZOOM-IN ON LOCAL GROUP AT Z = 0

Gas Temperature at z = 6.15 in the supergalactic YZ plane of the Local Group

Circles indicate progenitors of Virgo, Fornax, M31, and the MW

Orange is photoheated, photoionized gas;

Red is SN-shockheated;

Blue is cold and neutral

Shapiro, Ocvirk, Aubert, Iliev, Teyssier, Gillet, Yepes, Gottloeber, Choi, Park, D'Aloisio, Sullivan +

- (left) the local cosmic web in the atomic gas ;
- (middle) red regions denote very hot, supernova-powered superbubbles, while yellow-orange regions show the long-range impact of photo-heating by starlight;
- (right) ionized hydrogen fraction [dark red (dark blue) = ionized (neutral)].