VASP on GPUs When and how

Big thanks to

Carnegie Mellon group

Michael Widom

ENS/IFPEN group

- Paul Fleurat-Lessard
- Thomas Guignon

- Ani Anciaux-Sedrakian
- Philippe Sautet

RWTH Aachen Group

Stefan Maintz

Bernhard Eck

Richard Dronskowski

Big thanks to

University of Vienna group

Georg Kresse

Martijn Marsman

Doris Vogtenhuber

NVIDIA

- Christoph Angerer
- Jeroen Bédorf
- Arash Ashari
- Mark Berger

- Sarah Tariq
 - Dusan Stosic
- Paul Springer
- Jerry Chen

- Anthony Scudiero
- Darko Stosic
- Przemek Tredak
- Cliff Woolley

VASP on GPUs When and how

What is VASP?

VASP is a complex package for performing ab-initio quantum-mechanical molecular dynamics (MD) simulations using pseudopotentials or the projector-augmented wave method and a plane wave basis set¹.

Why VASP?

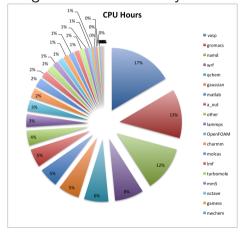
12-20% of CPU cycles @ HPC centers

Academia

- Physics
 - Materials science

- Physical chemistry
- Chemical engineering

Industry


Materials

Big semiconductor

Oil and gas

Chemicals

Usage @ Ohio SC's Oakley ²

 $^{^{2}12/14 - 2/15}$, via pbsacct

A brief history

Multiple prototypes (2009-2012)

- Diagonalization for traditional DFT³⁴(IFPEN, ENS, Aachen)
- Exact-exchange for hybrid functionals⁵(CMU, UChicago)

Cooperation and tuning (2012 - 2014)

- Merge prototypes with VASP 5.3.1
- Performance tune with NVIDIA engineers

³M. Hacene et al., DOI:10.1002/jcc.23096

⁴S. Maintz et al., DOI:10.1016/j.cpc.2011.03.010

⁵M. Hutchinson and M. Widom, DOI:10.1016/j.cpc.2012.02.017

A brief history

Multiple prototypes (2009-2012)

- Diagonalization for traditional DFT³⁴(IFPEN, ENS, Aachen)
- Exact-exchange for hybrid functionals⁵(CMU, UChicago)

Cooperation and tuning (2012 - 2014)

- Merge prototypes with VASP 5.3.1
- Performance tune with NVIDIA engineers

Max Hutchinson (UofC)

³M. Hacene et al., DOI:10.1002/jcc.23096

⁴S. Maintz et al., DOI:10.1016/j.cpc.2011.03.010

⁵M. Hutchinson and M. Widom, DOI:10.1016/j.cpc.2012.02.017

A brief history

Multiple prototypes (2009-2012)

- Diagonalization for traditional DFT³⁴(IFPEN, ENS, Aachen)
- Exact-exchange for hybrid functionals⁵(CMU, UChicago)

Cooperation and tuning (2012 - 2014)

- Merge prototypes with VASP 5.3.1
- Performance tune with NVIDIA engineers

³M. Hacene et al., DOI:10.1002/jcc.23096

⁴S. Maintz et al., DOI:10.1016/j.cpc.2011.03.010

⁵M. Hutchinson and M. Widom, DOI:10.1016/j.cpc.2012.02.017

A brief history

Acceptance and distribution (2015)

- GPU support accepted by Vienna
- Integrated development environments
- Established correctness
- To be included in standard VASP releases

Establishing correctness

We've taken a three-pronged approach to validation:

- 1. Internal testing against ~ 50 cases collected from collaborators
 - Focus on actively ported algorithms and models
- 2. Acceptance testing against ~ 100 cases by Vienna
 - Cover wider variety of VASP usage patterns
- Beta testing by 37 early access groups
 - Cover a wider variety of hardware and environments

Establishing correctness

We've taken a three-pronged approach to validation:

- 1. Internal testing against ~ 50 cases collected from collaborators
 - Focus on actively ported algorithms and models
- 2. Acceptance testing against ~ 100 cases by Vienna
 - Cover wider variety of VASP usage patterns
- Beta testing by 37 early access groups
 - Cover a wider variety of hardware and environments

Establishing correctness

9 / 19

We've taken a three-pronged approach to validation:

- 1. Internal testing against ~ 50 cases collected from collaborators
 - Focus on actively ported algorithms and models
- 2. Acceptance testing against ~ 100 cases by Vienna
 - Cover wider variety of VASP usage patterns
- Beta testing by 37 early access groups
 - Cover a wider variety of hardware and environments

Max Hutchinson (UofC) VASP on GPUs November 18, 2015

Establishing correctness

We've taken a three-pronged approach to validation:

- 1. Internal testing against ~ 50 cases collected from collaborators
 - Focus on actively ported algorithms and models
- 2. Acceptance testing against ~ 100 cases by Vienna
 - Cover wider variety of VASP usage patterns
- 3. Beta testing by 37 early access groups
 - Cover a wider variety of hardware and environments

Max Hutchinson (UofC) VASP on GPUs November 18, 2015 9 / 19

Beta testing

Three types of issues

- Use of unsupported features
- Merge with site-customized files (esp. main.F)
- Bugs in edge cases

Generally positive feedback

- "The short version is 'it works"
- "So far I found no problems, the code is fast and stable."
- "Absolute time to solution is faster with GPUs."

Release schedule

GPU support in official release

- Add CUDA paths and libraries to makefile.include
- make gpu gpu_ncl
- Executables are bin/gpu and bin/gpu_ncl

We expect the release by the end of the 2015.

Release schedule

- Add CUDA paths and libraries to makefile.include
- make gpu gpu_ncl
- Executables are bin/gpu and bin/gpu_ncl

We expect the release by the end of the 2015.

Feature support

■ [sc]GW[0]

Usage

Feature support

Fully supported

- Davidson
- R-space projection

■ NCORE > 1

RMM-DIIS

Non-collinear

Exact-exchange

KPAR

Feature support

Fully supported

- Davidson
- R-space projection

- RMM-DIIS
- Non-collinear

- Exact-exchange
- KPAR

Passively supported

■ [sc]GW[0]

Damped

All (Algo)

Unsupported

■ NCORE > 1

EEIEI D DEAD

Feature support

Fully supported

- Davidson
 - R-space projection

- RMM-DIIS
- Non-collinear

- Exact-exchange
- KPAR

Passively supported

■ [sc]GW[0]

Damped

All (Algo)

Unsupported

G-space projection

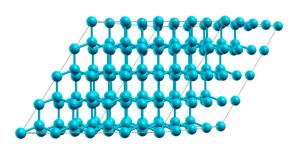
■ NCORE > 1

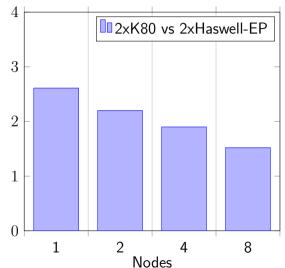
EFIELD_PEAD

Traditional DFT

You should

- Run with MPS (multi-process service)
- Experiment with multiple CPU ranks per GPU


Works best


- Large numbers of bands
- Large numbers of plane-waves

You can expect 2-4x for large systems with CPU/GPU balance; better on GPU-heavy workstations.

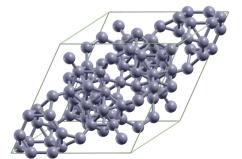
Example: Si super-cell

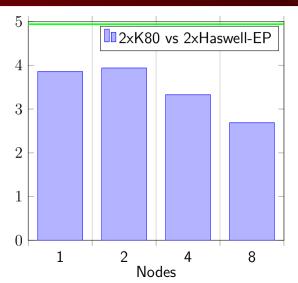
- 512 Si atoms
- 1282 bands
- 864000 PWs
- Algo = Normal

Hybrid functionals (exact-exchange)

You should

- Use 1 or 2 CPUs rank per GPU
- Set NSIM = NBAND / (2*NCPU)


Works best


- Large numbers of plane-waves
- Small number of ionic types

You can expect 1.5-6x, highly dependent on system size; better on GPU-heavy workstations.

Example: β -rhombohedral boron

- 105 Boron atoms
- 216 bands
- 110592 PWs
- Algo = Normal

Road-map: Features

- 1. Gamma-point for very large unit cells
- 2. G-space projection for small to medium unit cells
- 3. Van der Waals density functional (vdF-DF)
- 4. Random phase approximation (RPA)
- 5. Active support for [sc]GW[0]
- $\pmb{\mathsf{6}}.\ \mathsf{NCORE} > 1$ for highly parallel runs

Road-map: Performance

- Better performance for moderate sizes
 - Add blocking to all core kernels
 - Add batching to all library calls
- Better performance for large sizes
 - Update Magma support
 - Merge with threaded code base to reduce ranks per GPU
- Better performance for hybrid functionals
 - Parallelize outer loops
 - Pad projection sizes

Road-map: Performance

- Better performance for moderate sizes
 - Add blocking to all core kernels
 - Add batching to all library calls
- Better performance for large sizes
 - Update Magma support
 - Merge with threaded code base to reduce ranks per GPU
- Better performance for hybrid functionals
 - Parallelize outer loops
 - Pad projection sizes

Road-map: Performance

- Better performance for moderate sizes
 - Add blocking to all core kernels
 - Add batching to all library calls
- Better performance for large sizes
 - Update Magma support
 - Merge with threaded code base to reduce ranks per GPU
- Better performance for hybrid functionals
 - Parallelize outer loops
 - Pad projection sizes

Max Hutchinson (UofC)

Road-map: Performance

- Better performance for moderate sizes
 - Add blocking to all core kernels
 - Add batching to all library calls
- Better performance for large sizes
 - Update Magma support
 - Merge with threaded code base to reduce ranks per GPU
- Better performance for hybrid functionals
 - Parallelize outer loops
 - Pad projection sizes

 Max Hutchinson (UofC)
 VASP on GPUs
 November 18, 2015
 18 / 19

Summary

GPU VASP will give you the right answer

Extensive testing in Beta and for Vienna's acceptance

GPU VASP will give 2-4x performance on moderate to large systems

The bigger the better

We are continuing to add feature support and improve performance

Gamma-point is next on the lis

Summary

GPU VASP will give you the right answer

• Extensive testing in Beta and for Vienna's acceptance

GPU VASP will give 2-4x performance on moderate to large systems

The bigger the better

We are continuing to add feature support and improve performance

Gamma-point is next on the list

Summary

GPU VASP will give you the right answer

• Extensive testing in Beta and for Vienna's acceptance

GPU VASP will give 2-4x performance on moderate to large systems

The bigger the better

We are continuing to add feature support and improve performance

Gamma-point is next on the list

Summary

GPU VASP will give you the right answer

• Extensive testing in Beta and for Vienna's acceptance

GPU VASP will give 2-4x performance on moderate to large systems

The bigger the better

We are continuing to add feature support and improve performance

Gamma-point is next on the list

Summary

GPU VASP will give you the right answer

Extensive testing in Beta and for Vienna's acceptance

GPU VASP will give 2-4x performance on moderate to large systems

The bigger the better

We are continuing to add feature support and improve performance

Gamma-point is next on the list

More performance

