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The Goal: 
 
Sustained ExaFLOPs on 
problems of interest 
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Exascale Challenges 

Energy efficiency 

 

Programmability 

 

Resilience 

 

Sustained performance on real applications 

Scalability 
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NVIDIA’s ExaScale Vision 

Energy efficiency 

Hybrid architecture, efficient architecture, aggressive circuits, data locality 
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Target-independent programming, adaptation layer, agile network, hardware 

support 
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Containment domains, low SDC 
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20PF 
18,000 GPUs 

10MW 
2 GFLOPs/W 
~10

7
 Threads 

You Are Here 

1,000PF (50x) 
72,000HCNs (4x) 

20MW (2x) 
50 GFLOPs/W (25x) 

~10
10
 Threads (1000x) 

2013 

2023 
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~10
10
 Threads (1000x) 

2013 

2023 

2017 

CORAL 
150-300PF (5-10x) 

11MW (1.1x) 
14-27 GFLOPs/W (7-14x) 

Lots of Threads 



8 

Energy Efficiency 
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Its not about the FLOPs 

16nm chip, 10mm on a side, 200W 

DFMA 0.01mm2 10pJ/OP – 2GFLOPs 

A chip with 104 FPUs: 

100mm2 

200W 

20TFLOPS 

 

Pack 50,000 of these in racks 

1EFLOPS 

10MW  
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Overhead 
 

Locality 
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Heterogeneous Node 

System Interconnect 
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CPU 
130 pJ/flop (Vector SP) 

Optimized for Latency 

Deep Cache Hierarchy 

Haswell 
22 nm 

GPU 
30 pJ/flop (SP) 

Optimized for Throughput 

Explicit Management 
of On-chip Memory 

Maxwell 
28 nm 
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CPU 
2nJ/flop (Scalar SP) 

Optimized for Latency 

Deep Cache Hierarchy 

Haswell 
22 nm 

GPU 
30 pJ/flop (SP) 

Optimized for Throughput 

Explicit Management 
of On-chip Memory 

Maxwell 
28 nm 
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How is Power Spent in a CPU? 

In-order Embedded OOO Hi-perf 

Clock + Control Logic 

24% 

Data Supply 

17% 

Instruction Supply 

42% 

Register File 

11% 

ALU   6% 
Clock + Pins 

45% 

ALU 

4% 

Fetch 

11% 

Rename 

10% 

Issue 

11% 

RF 

14% 

Data 
Supply 

5% 

Dally [2008] (Embedded in-order CPU) Natarajan [2003] (Alpha 21264) 
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Overhead  

980pJ 

Payload 

Arithmetic 

20pJ 
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64 threads

4 active threads

2 DFMAs (4 FLOPS/clock)

ORF bank: 16 entries (128 Bytes)

L0 I$: 64 instructions (1KByte)

LM Bank: 8KB (32KB total)
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Overhead  

20pJ 

Payload 

Arithmetic 

20pJ 
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Energy-Efficient Architecture 

See Steve Keckler’s Booth Talk – Wednesday 2:30PM 

How to reduce energy 10x when process gives 2x 

Do Less Work 

Eliminate redundancy, waste, and overhead 

Move fewer bits – over less distance 

Move data more efficiently 
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64-bit DP 
20pJ 26 pJ 256 pJ 

1 nJ 

500 pJ Efficient 
off-chip link 

256-bit buses 

16 nJ 
DRAM 
Rd/Wr 

256-bit access 
8 kB SRAM 50 pJ 

20mm 

Communication Energy 
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Charge-Recycled Signaling (CRS) 

Repeaters

Swizzlers (Re-time & Level-Shift or Bypass)

Pattern generators/checkers 

and configuration logic
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4x 
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Ground-Referenced Signaling (GRS) 

Probe Station 

Test Chip #1 on Board 

Test Chip #2 fabricated on production GPU 

Eye Diagram from Probe 
Poulton et al. ISSCC 2013, JSSCC Dec 2013 
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Programmability 
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Target-

Independent 

Source 

Mapping 

Tools 

Target-

Dependent 

Adaptation 

Profiling & 

Visualization 
Mapping 

Directives 

Compile 

Target-

Dependent 

Executable 

Target-Independent Programming 
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Legion Programming Model 
Enabling Powerful Program Analysis 

Legion 

Program 

Machine-Independent 
Specification 
 
Tasks: decouple 
control from machine 
 
Logical regions: 
decouple program 
data from machine 
 
Sequential semantics 

Legion 

Analysis! Why it matters 
 
Reduce programmer pain 
 
Extract ALL parallelism 
 
Easily transform and remap 
programs for new machines 

Tasks + Data 

Model = 
Powerful 

Programming 

Analysis 
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Comparison with MPI+OpenACC 

The power of program analysis 

1.75X 

2.85X 

Weak scaling results on Titan out to 8K nodes 

As application and machine complexity increases, the performance gap will grow. 
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Scalability 
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System Sketch 

System Interconnect 

Cabinet 0:  6.3 PF, 128 TB 

System: up to 1 EFlop 
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Heterogenous Network Requirements 

GPUs present unique requirements on network 

104 – 105 threads initiating transactions 

Can saturate 150GB/s NVLINK bandwidth 

 

In addition to HPC requirements not met by commodity networks 

Scalable BW up to 200GB/s per endpoint 

<1us end-to-end latency at 16K endpoints 

Scale to 128K endpoints 

Load balanced routing 

Congestion control 

 

Operations: Load/Store, Atomics, Messages, Collectives 
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Conclusion 

Energy Efficiency 

Reduce overhead with Throughput cores 

Efficient Signaling Circuits 

Enhanced Locality 

 

Programming 1010 Threads 

Target-independent programming – mapping via tools 
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