Responsive Large Data Analysis and Visualization with the ParaView Ecosystem

Patrick O’Leary, Kitware Inc
Hybrid Computing

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Titan</th>
<th>Summit - 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute Nodes</td>
<td>18,688</td>
<td>~3,400</td>
</tr>
<tr>
<td>Processor</td>
<td>(1) 16-core AMD Opteron per node</td>
<td>(Multiple) IBM POWER 9s per node</td>
</tr>
<tr>
<td>Accelerator</td>
<td>(1) NVIDIA Kepler K20x per node</td>
<td>(Multiple) NVIDIA Volta GPUs per node</td>
</tr>
<tr>
<td>Memory per node</td>
<td>32GB (DDR3)</td>
<td>>512GB (HBM+DDR4)</td>
</tr>
<tr>
<td>CPU-GPU Interconnect</td>
<td>PCI Gen2</td>
<td>NVLINK (5-12x PCIe3)</td>
</tr>
<tr>
<td>System Interconnect</td>
<td>Gemini</td>
<td>Dual Rail EDR-IB (23 GB/s)</td>
</tr>
<tr>
<td>Peak Power Consumption</td>
<td>9 MW</td>
<td>10 MW</td>
</tr>
</tbody>
</table>
Unfortunately, hybrid computing systems are not without drawbacks. Developing and deploying an application on a hybrid system is more challenging than traditional clusters due to the heterogeneous nature of the system.

- The model of the computer taken when developing applications is often resource agnostic.
- Many applications are developed with a mostly unrestricted view of memory, which creates problems porting code to components with a restricted working set.
- The interconnect between the traditional and the non-traditional component(s) maybe high latency or low bandwidth, which may cause bottlenecks not originally present.
- The number of computational units sharing an interconnect is greatly increased in some cases, which can also lead to link saturation.
- Finally, some computing components require more explicit description of the fine- and coarse-grain parallelism.

All of these issues transform a complex development task in to a formidable Herculean task.
• A software company creating open-source collaboration platforms, which are used globally for
 – research
 – education
 – commercial applications
• This software is created by
 – internationally recognized experts
 – in extended communities
 – using a rigorous, quality-inducing software development process.

Note: Inc. Magazine announced the 2012 Inc. 500|5000 list, an exclusive ranking of the nation's fastest-growing private companies. Kitware ranked #1245 overall and #100 among software companies, with three year revenue growth of 248%.
VTK Update

• NVIDIA and Kitware collaboration
• Major rewrite of VTK’s rendering code
 – Mainly geometry and volume rendering
 – Rendering code for desktop and embedded systems
 – Take advantage of modern programmable GPU: migration from fixed pipeline to buffers and GLSL
 – Recast interaction with data pipelines to take full advantage of batching for improved transfer
Performance, Scale and Shiny Pictures

• Geometry rendering about 100 times faster
 – Initial frame/updated input ten times faster
 – Memory footprint about half for single large geometry
• Volume rendering twice as fast
 – Improved capability to run across systems
• Capable of rendering much larger systems
 – Single node/workstation rendering on 200M+ triangles
 – Client-server rendering sees similar per-node gains
• Other advanced rendering techniques
 – Glyphs, impostors, Gaussian splatting for data
• Main thread was CPU bound, now GPU bound
ParaView is an open-source, multi-platform, data analysis and visualization application for analyzing extremely large datasets using distributed memory computing resources.
History

and several more!
Data Analysis & Visualization
What is it?
A set of tools for \textit{in situ} analysis and visualization

Why use it?

\textbf{Brief answer} – one solution to reduced relative IO performance on the road to exascale

\textbf{More details} – provide flexible analysis options and better usage of computational resources to reduce scientists’ time to insight into given problems

Typically 3 calls between simulation code and adaptor
- Initialize()
 - MPI communicator (optional)
 - Add analysis scripts
- CoProcess()
 - Does the work (potentially)
- Finalize()

Information provided by solver to adaptor
- Time, time step, force output
- Grids and fields

Information provided by adaptor
- Pipelines to execute
- Time, time step, force output
- Grid and fields when needed
- MPI communicator

Information provided by Catalyst
- If co-processing needs to be done
- What grids and fields are needed

\textbf{Note}: User data can be shared both ways
• A single place for the analysis and visualization community to collaborate, contribute, and leverage massively threaded algorithms
• Make it easier for simulation codes to take advantage of these parallel analysis and visualization and algorithms on all next-generation hardware
• Data parallel primitives provide an abstraction layer between the hardware's architecture and the high-level algorithm
Brings together the development teams of multiple projects
- **EAVL**, Oak Ridge National Laboratory
- **DAX**, Sandia National Laboratory
- **PISTON**, Los Alamos National Laboratory

Working with hardware vendors to make VTK-m efficient
ParaView ‘Live’

simulate

$t = 0, 1, \ldots$

analyze + visualize

Extracts / Images
Acknowledgements

Imperial College @imperial.ac.uk
• Arvind Iyer (a.iyer)
• Jin Seok Park (jin-seok.park)
• Brian Vermeire (b.vermeire)
• Peter Vincent (p.vincent)
• Freddie Witherden (freddie.witherden08)

Kitware, Inc @kitware.com
• Utkarsh Ayachit (utkarsh.ayachit)
• T.J. Corona (tj.corona)
• David DeMarle (dave.demarle)
• Berk Geveci (berk.geveci)
• Robert Maynard (robert.maynard)

NVIDIA @nvidia.com
• Bhushan Desam (bdesam)
• Tom Fogal (tfogal)
• Peter Messmer (pmessmer)
• Jeremy Purches (jpurches)

The VTK-m / Catalyst code was written by:
• Utkarsh Ayachit
• T.J. Corona
• Robert Maynard
• Tom Fogal

Note: Thank You Don Maxwell and Jack Wells and for OLCF Allocation.
Demonstration
NVIDIA IndeX Integration

• Volume rendering is an important analysis tool, but challenges grow with data sizes when interactivity is essential for exploratory science in supercomputing
• NVIDIA IndeX is a scalable volume visualization solution that provides interactive performance on GPU clusters and supercomputers
• ParaView users can now access NVIDIA IndeX commercial solution without changing existing workflows
• Early version with support for structured grids and time-series data will be available for evaluation in Q1 2016

Volume visualization of a terabyte size tornado dataset in ParaView with NVIDIA IndeX (Dataset courtesy of Leigh Orf, U. of Wisconsin-Madison and Rob Sisneros, NCSA)
Workings of NVIDIA IndeX for ParaView

- Simple deployment on the user side
 - Load as any other Paraview plugin
- Plugin adds a new “Representation”
 - Switch to “NVIDIA IndeX” Representation in the GUI
- Cluster rendering in Paraview’s client-server mode via MPI

Paraview

- Variety of readers, compute and other workflows

Paraview Plugin

NVIDIA IndeX

- Scalable, in-situ based large scale cluster rendering
Acknowledgements

Kitware, Inc @kitware.com
 • Utkarsh Ayachit (utkarsh.ayachit)
 • Berk Geveci (berk.geveci)

NVIDIA @nvidia.com
 • Mahendra Roopa (mroopa)
 • Bhushan Desam (bdesam)
 • Tom-Michael Thamm (tthamm)
Demonstrations