BACKGROUND

What limits the scalability of parallel applications?

Efficiency of parallel computation tasks

• Amount of exposed parallelism
• Amount of work assigned to each processor

Expense of communications among tasks

• Amount of communication
• Degree of overlap of communication with computation
COMMON COMMUNICATION PATTERNS
COMMUNICATION AMONG TASKS

What are common communication patterns?

Point-to-point communication
- Single sender, single receiver
- Relatively easy to implement efficiently

Collective communication
- Multiple senders and/or receivers
- Patterns include broadcast, scatter, gather, reduce, all-to-all, ...
- Difficult to implement efficiently
POINT-TO-POINT COMMUNICATION

Single-sender, single-receiver per instance

Most common pattern in HPC, where communication is usually to nearest neighbors
COLLECTIVE COMMUNICATION

Multiple senders and/or receivers
BROADCAST
One sender, multiple receivers

GPU0 GPU1 GPU2 GPU3 GPU0 GPU1 GPU2 GPU3
A A A A

broadcast
SCATTER
One sender; data is distributed among multiple receivers

GPU0 GPU1 GPU2 GPU3
A
B
C
D

scatter

GPU0 GPU1 GPU2 GPU3
A B C D
GATHER
Multiple senders, one receiver

GPU0 GPU1 GPU2 GPU3
A B C D

GPU0 GPU1 GPU2 GPU3
A B C D

gather
ALL-GATHER

Gather messages from all; deliver gathered data to all participants

<table>
<thead>
<tr>
<th>GPU0</th>
<th>GPU1</th>
<th>GPU2</th>
<th>GPU3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

After all-gather:

<table>
<thead>
<tr>
<th>GPU0</th>
<th>GPU1</th>
<th>GPU2</th>
<th>GPU3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>
REDUCE
Combine data from all senders; deliver the result to one receiver

A B C D

A + B + C + D
ALL-REDUCE
Combine data from all senders; deliver the result to all participants

GPU0 GPU1 GPU2 GPU3
A B C D

A + B + C + D

GPU0 GPU1 GPU2 GPU3
A B C D

A + B + C + D

all-reduce
REDUCE-SCATTER
Combine data from all senders; distribute result across participants

<table>
<thead>
<tr>
<th></th>
<th>GPU0</th>
<th>GPU1</th>
<th>GPU2</th>
<th>GPU3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>B0</td>
<td>C0</td>
<td>D0</td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>B1</td>
<td>C1</td>
<td>D1</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>B2</td>
<td>C2</td>
<td>D2</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>B3</td>
<td>C3</td>
<td>D3</td>
<td></td>
</tr>
</tbody>
</table>

reduce-scatter

<table>
<thead>
<tr>
<th></th>
<th>GPU0</th>
<th>GPU1</th>
<th>GPU2</th>
<th>GPU3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0+B0+C0+D0</td>
<td>A1+B1+C1+D1</td>
<td>A2+B2+C2+D2</td>
<td>A3+B3+C3+D3</td>
<td></td>
</tr>
</tbody>
</table>
ALL-TO-ALL

Scatter/Gather distinct messages from each participant to every other

<table>
<thead>
<tr>
<th>GPU0</th>
<th>GPU1</th>
<th>GPU2</th>
<th>GPU3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>B0</td>
<td>C0</td>
<td>D0</td>
</tr>
<tr>
<td>A1</td>
<td>B1</td>
<td>C1</td>
<td>D1</td>
</tr>
<tr>
<td>A2</td>
<td>B2</td>
<td>C2</td>
<td>D2</td>
</tr>
<tr>
<td>A3</td>
<td>B3</td>
<td>C3</td>
<td>D3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GPU0</th>
<th>GPU1</th>
<th>GPU2</th>
<th>GPU3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
</tr>
<tr>
<td>B0</td>
<td>B1</td>
<td>B2</td>
<td>B3</td>
</tr>
<tr>
<td>C0</td>
<td>C1</td>
<td>C2</td>
<td>C3</td>
</tr>
<tr>
<td>D0</td>
<td>D1</td>
<td>D2</td>
<td>D3</td>
</tr>
</tbody>
</table>

all-to-all
THE CHALLENGE OF COLLECTIVES
THE CHALLENGE OF COLLECTIVES

Collectives are often avoided because they are expensive. Why?

Having multiple senders and/or receivers compounds communication inefficiencies

• For small transfers, latencies dominate; more participants increase latency
• For large transfers, bandwidth is key; bottlenecks are easily exposed
• May require topology-aware implementation for high performance
• Collectives are often blocking/non-overlapped
Collectives are central to scalability in a variety of key applications:

- Deep Learning (All-reduce, broadcast, gather)
- Parallel FFT (Transposition is all-to-all)
- Molecular Dynamics (All-reduce)
- Graph Analytics (All-to-all)
- ...
THE CHALLENGE OF COLLECTIVES

Many implementations seen in the wild are suboptimal

Scaling requires efficient communication algorithms and careful implementation

Communication algorithms are topology-dependent

Topologies can be complex - not every system is a fat tree

Most collectives amenable to bandwidth-optimal implementation on rings, and many topologies can be interpreted as one or more rings [P. Patarasuk and X. Yuan]
RING-BASED COLLECTIVES: A PRIMER
BROADCAST
with unidirectional ring
Step 1: $\Delta t = \frac{N}{B}$

N: bytes to broadcast

B: bandwidth of each link
BROADCAST
with unidirectional ring

GPU0 → GPU1 → GPU2 → GPU3

Step 1: $\Delta t = \frac{N}{B}$
Step 2: $\Delta t = \frac{N}{B}$

N: bytes to broadcast
B: bandwidth of each link
BROADCAST

with unidirectional ring

Step 1: $\Delta t = \frac{N}{B}$
Step 2: $\Delta t = \frac{N}{B}$
Step 3: $\Delta t = \frac{N}{B}$

N: bytes to broadcast
B: bandwidth of each link
BROADCAST
with unidirectional ring

Step 1: $\Delta t = \frac{N}{B}$
Step 2: $\Delta t = \frac{N}{B}$
Step 3: $\Delta t = \frac{N}{B}$
Total time: $(k - 1)\frac{N}{B}$

N: bytes to broadcast
B: bandwidth of each link
k: number of GPUs
BROADCAST
with unidirectional ring
BROADCAST
with unidirectional ring

Split data into S messages

Step 1: $\Delta t = N/(SB)$
BROADCAST

with unidirectional ring

Split data into S messages

Step 1: $\Delta t = N/(SB)$

Step 2: $\Delta t = N/(SB)$
BROADCAST
with unidirectional ring

Split data into S messages

Step 1: $\Delta t = \frac{N}{SB}$

Step 2: $\Delta t = \frac{N}{SB}$

Step 3: $\Delta t = \frac{N}{SB}$
BROADCAST
with unidirectional ring

Split data into S messages

Step 1: $\Delta t = \frac{N}{SB}$
Step 2: $\Delta t = \frac{N}{SB}$
Step 3: $\Delta t = \frac{N}{SB}$
Step 4: $\Delta t = \frac{N}{SB}$
BROADCAST
with unidirectional ring

Split data into S messages

Step 1: $\Delta t = \frac{N}{SB}$

Step 2: $\Delta t = \frac{N}{SB}$

Step 3: $\Delta t = \frac{N}{SB}$

Step 4: $\Delta t = \frac{N}{SB}$

...

Total time:
$SN/(SB) + (k - 2) \frac{N}{SB}$
$= N(S + k - 2)/(SB) \rightarrow N/B$
ALL-REDUCE
with unidirectional ring

Chunk: 1
Step:
ALL-REDUCE
with unidirectional ring

Chunk: 1
Step: 1
ALL-REDUCE
with unidirectional ring

Chunk: 1
Step: 2
ALL-REDUCE
with unidirectional ring
ALL-REDUCE
with unidirectional ring
ALL-REDUCE
with unidirectional ring

GPU0 GPU1 GPU2 GPU3

Chunk: 1
Step: 5
ALL-REDUCE
with unidirectional ring

GPU0

GPU1

GPU2

GPU3

Chunk: 1
Step: 6
ALL-REDUCE
with unidirectional ring
ALL-REDUCE
with unidirectional ring

GPU0

GPU1

GPU2

GPU3

Chunk: 2
Step:
ALL-REDUCE with unidirectional ring
ALL-REDUCE
with unidirectional ring

Chunk: 2
Step: 2
ALL-REDUCE
with unidirectional ring

GPU0

GPU1

GPU2

GPU3

done
RING-BASED COLLECTIVES

A primer

4-GPU-PCIe

CPU

Switch

GPU0
GPU1
GPU2
GPU3

PCIe Gen3 x16
~12 GB/s
RING-BASED COLLECTIVES
A primer

4-GPU-PCIe

PCIe Gen3 x16 ~12 GB/s
RING-BASED COLLECTIVES
...apply to lots of possible topologies
RING-BASED COLLECTIVES
...apply to lots of possible topologies
RING-BASED COLLECTIVES
...apply to lots of possible topologies

4-GPU-Ring

4-GPU-FC
INTRODUCING NCCL ("NICKEL"): ACCELERATED COLLECTIVES FOR MULTI-GPU SYSTEMS
INTRODUCING NCCL
Accelerating multi-GPU collective communications

GOAL:
• Build a research library of accelerated collectives that is easily integrated and topology-aware so as to improve the scalability of multi-GPU applications

APPROACH:
• Pattern the library after MPI’s collectives
• Handle the intra-node communication in an optimal way
• Provide the necessary functionality for MPI to build on top to handle inter-node
NCCL FEATURES AND FUTURES
(Green = Currently available)

Collectives
• Broadcast
• All-Gather
• Reduce
• All-Reduce
• Reduce-Scatter
• Scatter
• Gather
• All-To-All
• Neighborhood

Key Features
• Single-node, up to 8 GPUs
• Host-side API
• Asynchronous/non-blocking interface
• Multi-thread, multi-process support
• In-place and out-of-place operation
• Integration with MPI
• Topology Detection
• NVLink & PCIe/QPI* support
NCCL IMPLEMENTATION

Implemented as monolithic CUDA C++ kernels combining the following:

- GPUDirect P2P Direct Access
- Three primitive operations: Copy, Reduce, ReduceAndCopy
- Intra-kernel synchronization between GPUs
- One CUDA thread block per ring-direction
NCCL EXAMPLE

All-reduce

#include <nccl.h>
ncclComm_t comm[4];
ncclCommInitAll(comm, 4, {0, 1, 2, 3});
foreach g in (GPUs) { // or foreach thread
 cudaSetDevice(g);
 double *d_send, *d_recv;
 // allocate d_send, d_recv; fill d_send with data
 ncclAllReduce(d_send, d_recv, N, ncclDouble, ncclSum, comm[g], stream[g]);
 // consume d_recv
}
NCCL PERFORMANCE
Bandwidth at different problem sizes (4 Maxwell GPUs)

- **Broadcast**: Max memcpy: 10.4 GB/s, latency: 38 us
- **All-Reduce**: Max memcpy: 10.4 GB/s, latency: 55 us
- **All-Gather**: Max memcpy: 10.4 GB/s, latency: 47 us
- **Reduce-Scatter**: Max memcpy: 10.4 GB/s, latency: 48 us
AVAILABLE NOW

github.com/NVIDIA/nccl
THANKS TO MY COLLABORATORS

Nathan Luehr
Jonas Lippuner
Przemek Tredak
Sylvain Jeaugey
Natalia Gimelshein
Simon Layton

This research is funded in part by the U.S. DOE DesignForward program