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BACKGROUND

Efficiency of parallel computation tasks

• Amount of exposed parallelism

• Amount of work assigned to each processor

Expense of communications among tasks

• Amount of communication

• Degree of overlap of communication with computation

What limits the scalability of parallel applications?
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COMMON COMMUNICATION PATTERNS
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COMMUNICATION AMONG TASKS

Point-to-point communication

• Single sender, single receiver

• Relatively easy to implement efficiently

Collective communication

• Multiple senders and/or receivers

• Patterns include broadcast, scatter, gather, reduce, all-to-all, …

• Difficult to implement efficiently

What are common communication patterns?



5

POINT-TO-POINT COMMUNICATION

Most common pattern in HPC, where communication is usually to nearest neighbors

Single-sender, single-receiver per instance

2D Decomposition

Boundary

exchanges
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COLLECTIVE COMMUNICATION
Multiple senders and/or receivers
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BROADCAST
One sender, multiple receivers

GPU0 GPU1 GPU2 GPU3

A

GPU0 GPU1 GPU2 GPU3

A A A A

broadcast
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SCATTER
One sender; data is distributed among multiple receivers

scatter

GPU0 GPU1 GPU2 GPU3

A B C D

GPU0 GPU1 GPU2 GPU3

A

B

C

D
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GATHER
Multiple senders, one receiver

GPU0 GPU1 GPU2 GPU3

A

B

C

D

GPU0 GPU1 GPU2 GPU3

A B C D

gather
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ALL-GATHER
Gather messages from all; deliver gathered data to all participants

GPU0 GPU1 GPU2 GPU3

A B C D

GPU0 GPU1 GPU2 GPU3

A A A A

B B B B

C C C C

D D D D

all-gather



12

REDUCE
Combine data from all senders; deliver the result to one receiver

GPU0 GPU1 GPU2 GPU3

A B C D

reduce

GPU0 GPU1 GPU2 GPU3

A

+

B

+

C

+

D
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ALL-REDUCE
Combine data from all senders; deliver the result to all participants

GPU0 GPU1 GPU2 GPU3

A B C D

all-reduce
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REDUCE-SCATTER
Combine data from all senders; distribute result across participants

reduce-
scatter

GPU0 GPU1 GPU2 GPU3

A0+B0+

C0+D0

A1+B1+

C1+D1

A2+B2+

C2+D2

A3+B3+

C3+D3

GPU0 GPU1 GPU2 GPU3

A0 B0 C0 D0

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3
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ALL-TO-ALL
Scatter/Gather distinct messages from each participant to every other

GPU0 GPU1 GPU2 GPU3

A0 B0 C0 D0

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

all-to-all

GPU0 GPU1 GPU2 GPU3

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

D0 D1 D2 D3
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THE CHALLENGE OF COLLECTIVES
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THE CHALLENGE OF COLLECTIVES

Having multiple senders and/or receivers compounds communication inefficiencies

• For small transfers, latencies dominate; more participants increase latency

• For large transfers, bandwidth is key; bottlenecks are easily exposed

• May require topology-aware implementation for high performance

• Collectives are often blocking/non-overlapped

Collectives are often avoided because they are expensive.  Why?
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THE CHALLENGE OF COLLECTIVES

Collectives are central to scalability in a variety of key applications:

• Deep Learning (All-reduce, broadcast, gather)

• Parallel FFT (Transposition is all-to-all)

• Molecular Dynamics (All-reduce)

• Graph Analytics (All-to-all)

• …

If collectives are so expensive, do they actually get used?  YES!
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THE CHALLENGE OF COLLECTIVES

Scaling requires efficient communication algorithms and careful implementation

Communication algorithms are topology-dependent

Topologies can be complex – not every system is a fat tree

Most collectives amenable to bandwidth-optimal implementation on rings, and
many topologies can be interpreted as one or more rings [P. Patarasuk and X. Yuan]

Many implementations seen in the wild are suboptimal
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RING-BASED COLLECTIVES: A PRIMER
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BROADCAST
with unidirectional ring

GPU0 GPU1 GPU2 GPU3
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BROADCAST

Step 1: ∆𝑡 = 𝑁/𝐵

𝑁: bytes to broadcast

𝐵: bandwidth of each link

with unidirectional ring

GPU0 GPU1 GPU2 GPU3
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BROADCAST

Step 1: ∆𝑡 = 𝑁/𝐵

Step 2: ∆𝑡 = 𝑁/𝐵

𝑁: bytes to broadcast

𝐵: bandwidth of each link

with unidirectional ring

GPU0 GPU1 GPU2 GPU3
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BROADCAST

Step 1: ∆𝑡 = 𝑁/𝐵

Step 2: ∆𝑡 = 𝑁/𝐵

Step 3: ∆𝑡 = 𝑁/𝐵

𝑁: bytes to broadcast

𝐵: bandwidth of each link

with unidirectional ring

GPU0 GPU1 GPU2 GPU3
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BROADCAST

Step 1: ∆𝑡 = 𝑁/𝐵

Step 2: ∆𝑡 = 𝑁/𝐵

Step 3: ∆𝑡 = 𝑁/𝐵

Total time: 𝑘 − 1 𝑁/𝐵

𝑁: bytes to broadcast

𝐵: bandwidth of each link

𝑘: number of GPUs

with unidirectional ring

GPU0 GPU1 GPU2 GPU3
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BROADCAST
with unidirectional ring

GPU0 GPU1 GPU2 GPU3
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BROADCAST

Split data into 𝑆 messages

Step 1: ∆𝑡 = 𝑁/(𝑆𝐵)

with unidirectional ring

GPU0 GPU1 GPU2 GPU3
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BROADCAST

Split data into 𝑆 messages

Step 1: ∆𝑡 = 𝑁/(𝑆𝐵)

Step 2: ∆𝑡 = 𝑁/(𝑆𝐵)

with unidirectional ring

GPU0 GPU1 GPU2 GPU3
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BROADCAST

Split data into 𝑆 messages

Step 1: ∆𝑡 = 𝑁/(𝑆𝐵)

Step 2: ∆𝑡 = 𝑁/(𝑆𝐵)

Step 3: ∆𝑡 = 𝑁/(𝑆𝐵)

with unidirectional ring

GPU0 GPU1 GPU2 GPU3
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BROADCAST

Split data into 𝑆 messages

Step 1: ∆𝑡 = 𝑁/(𝑆𝐵)

Step 2: ∆𝑡 = 𝑁/(𝑆𝐵)

Step 3: ∆𝑡 = 𝑁/(𝑆𝐵)

Step 4: ∆𝑡 = 𝑁/(𝑆𝐵)

with unidirectional ring

GPU0 GPU1 GPU2 GPU3
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BROADCAST

Split data into 𝑆 messages

Step 1: ∆𝑡 = 𝑁/(𝑆𝐵)

Step 2: ∆𝑡 = 𝑁/(𝑆𝐵)

Step 3: ∆𝑡 = 𝑁/(𝑆𝐵)

Step 4: ∆𝑡 = 𝑁/(𝑆𝐵)

...

Total time: 
S𝑁/(𝑆𝐵) + (𝑘 − 2)  𝑁 (𝑆𝐵)
= 𝑁(𝑆 + 𝑘 − 2)/(𝑆𝐵) → 𝑁/𝐵

with unidirectional ring

GPU0 GPU1 GPU2 GPU3
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ALL-REDUCE
with unidirectional ring

GPU0 GPU1 GPU2 GPU3

Chunk: 1
Step: 0
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ALL-REDUCE
with unidirectional ring

GPU0 GPU1 GPU2 GPU3

Chunk: 1
Step: 1



34

ALL-REDUCE
with unidirectional ring

GPU0 GPU1 GPU2 GPU3

Chunk: 1
Step: 2
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ALL-REDUCE
with unidirectional ring

GPU0 GPU1 GPU2 GPU3

Chunk: 1
Step: 3
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ALL-REDUCE
with unidirectional ring

GPU0 GPU1 GPU2 GPU3

Chunk: 1
Step: 4
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ALL-REDUCE
with unidirectional ring

GPU0 GPU1 GPU2 GPU3

Chunk: 1
Step: 5
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ALL-REDUCE
with unidirectional ring

GPU0 GPU1 GPU2 GPU3

Chunk: 1
Step: 6
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ALL-REDUCE
with unidirectional ring

GPU0 GPU1 GPU2 GPU3

Chunk: 1
Step: 7
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ALL-REDUCE
with unidirectional ring

GPU0 GPU1 GPU2 GPU3

Chunk: 2
Step: 0
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ALL-REDUCE
with unidirectional ring

GPU0 GPU1 GPU2 GPU3

Chunk: 2
Step: 1
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ALL-REDUCE
with unidirectional ring

GPU0 GPU1 GPU2 GPU3

Chunk: 2
Step: 2
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ALL-REDUCE
with unidirectional ring

GPU0 GPU1 GPU2 GPU3

done
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RING-BASED COLLECTIVES
A primer

GPU0 GPU1

CPU

4-GPU-PCIe

GPU2 GPU3

Switch

PCIe Gen3 x16 
~12 GB/s
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RING-BASED COLLECTIVES
A primer

GPU0 GPU1

CPU

4-GPU-PCIe

GPU2 GPU3

Switch

PCIe Gen3 x16 
~12 GB/s
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RING-BASED COLLECTIVES
…apply to lots of possible topologies

GPU0 GPU1

CPU

GPU2 GPU3

Switch

GPU4 GPU5

CPU

GPU6 GPU7

Switch

PCIe Gen3 x16 
~12 GB/s

SMP Connection 
(e.g., QPI)
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RING-BASED COLLECTIVES
…apply to lots of possible topologies

GPU2

CPU

4-GPU-FC

GPU1

GPU3

GPU0

Switch

32 GB/s

GPU2

CPU

4-GPU-Ring

GPU1

GPU3

GPU0

Switch

32 GB/s

NVLink
~16 GB/s

PCIe Gen3 x16 
~12 GB/s
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RING-BASED COLLECTIVES
…apply to lots of possible topologies

GPU2

CPU

4-GPU-FC

GPU1

GPU3

GPU0

Switch

GPU2

CPU

4-GPU-Ring

GPU1

GPU3

GPU0

Switch

NVLink
~16 GB/s

PCIe Gen3 x16 
~12 GB/s
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INTRODUCING NCCL (“NICKEL”):
ACCELERATED COLLECTIVES

FOR MULTI-GPU SYSTEMS
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INTRODUCING NCCL

GOAL:

• Build a research library of accelerated collectives that is easily integrated and 
topology-aware so as to improve the scalability of multi-GPU applications 

APPROACH:

• Pattern the library after MPI’s collectives

• Handle the intra-node communication in an optimal way

• Provide the necessary functionality for MPI to build on top to handle inter-node

Accelerating multi-GPU collective communications
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NCCL FEATURES AND FUTURES

Collectives

• Broadcast

• All-Gather

• Reduce

• All-Reduce

• Reduce-Scatter

• Scatter

• Gather

• All-To-All

• Neighborhood

Key Features

• Single-node, up to 8 GPUs

• Host-side API

• Asynchronous/non-blocking interface

• Multi-thread, multi-process support

• In-place and out-of-place operation

• Integration with MPI

• Topology Detection

• NVLink & PCIe/QPI* support

(Green = Currently available)
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NCCL IMPLEMENTATION

Implemented as monolithic CUDA C++ kernels combining the following:

• GPUDirect P2P Direct Access

• Three primitive operations: Copy, Reduce, ReduceAndCopy

• Intra-kernel synchronization between GPUs

• One CUDA thread block per ring-direction
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NCCL EXAMPLE

#include <nccl.h>

ncclComm_t comm[4];

ncclCommInitAll(comm, 4, {0, 1, 2, 3});

foreach g in (GPUs) { // or foreach thread

cudaSetDevice(g);

double *d_send, *d_recv;

// allocate d_send, d_recv; fill d_send with data

ncclAllReduce(d_send, d_recv, N, ncclDouble, ncclSum, comm[g], stream[g]);

// consume d_recv

}

All-reduce
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NCCL PERFORMANCE
Bandwidth at different problem sizes (4 Maxwell GPUs)

All-Gather

All-Reduce

Reduce-Scatter

Broadcast
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AVAILABLE NOW
github.com/NVIDIA/nccl
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