
GPU implementation of minimal dispersion recursive operators for reverse time migration

Allon Bartana*, Dan Kosloff, Brandon Warnell, Chris Connor, Jeff Codd and David Kessler, SeismicCity Inc.

Paulius Micikevicius, Ty Mckercher, Peng Wang and Paul Holzhauer, Nvidia Corporation

Summary

The implementation of new recursive operators for

computation of numerical derivatives results in minimal

dispersion in Reverse Time Migration Prestack Depth

Migration (i.e. RTM PSDM). Compared to the more

commonly used finite difference operators, the presented

new method enables imaging of higher frequencies in RTM

PSDM. Since RTM PSDM is the modern method of choice

for imaging many exploration targets, computer

optimization is an integral part of code development. We

present here details of the GPU implementation for newly

developed spatial derivative operators which enable routine

use in industrial settings.

Introduction

RTM is now the algorithm of choice for imaging of seismic

data used in exploration of potential hydrocarbons

reservoirs. Commonly, the high computational cost of

commercial RTM leads to use of Finite difference (i.e. FD)

operators for computation of spatial derivatives. However,

application of FD operators may result in numerical

dispersion that appears as coherent noise on depth migrated

seismic data. In geological settings that are difficult to

illuminate and image such as those close to and beneath salt

bodies, coherent noise can be interpreted as primaries and

can cause incorrect analysis of the seismic data. Since so

many exploration targets rely on RTM PSDM accuracy, it

is very important to develop new generation of RTM

PSDM algorithms that will produce minimal dispersion

PSDM seismic data and therefore improve confidence in

interpreted results.

Numerical approximation of spatial derivatives for

RTM

Here we present a new spatial recursive operator that is

used for application of spatial derivatives in RTM

algorithms in an effort to produce more accurate and

minimal dispersive RTM PSDM data. The application of

these operators requires the solution of tri-diagonal linear

equation systems which can be carried out efficiently. The

derivative operators are designed by a Remez exchange

procedure (Kosloff et. al. 2008). The importance of using

minimal dispersive numerical operators is that it enables us

to use higher frequencies in commercial RTM PSDM while

maintaining reasonable computational cost. This is

compared to FD based RTM PSDM that requires increased

computational resources for migrating higher frequencies.

Recursive derivative operators

We illustrate here the recursive derivative operator for

approximating the second spatial derivative. The

approximation of other higher order spatial derivatives

proceeds in an analogous manner.

Given a function 𝑓(𝑥), we denote its sampled values by

𝑓[𝑗] = 𝑓(𝑥 = 𝑗𝑑𝑥)

Derivative approximation can be written as

𝜕2𝑓

𝜕𝑥2
[𝑗] =

𝑎0 + 𝑎1∆1 + 𝑎2∆2 +∙∙∙ +𝑎𝑁∆𝑁

1 + 𝑏1∆1 + 𝑏2∆2 +∙∙∙ +𝑏𝑀∆𝑀
𝑓[𝑗]

Where ∆𝑘𝑓[𝑗] = 𝑓[𝑗 + 𝑘] + 𝑓[𝑗 − 𝑘].
We will consider operators for which 𝑀 ≤ 𝑁.

In this case it can be recast in an equivalent form

𝜕2𝑓

𝜕𝑥2
[𝑗] = (𝑐0 +∙∙∙ +𝑐𝑁−𝑀∆𝑁−𝑀 +

𝑑0

1 + 𝛽0∆1
+ ⋯

+
𝑑𝑀−1

1 + 𝛽𝑀−1∆1
) 𝑓[𝑗]

Each of the rational terms in (2) comprises a tri-diagonal

equation system. In the present implementation, only one

rational term is used.

GPU implementation

In general, computer implementation of RTM algorithms

involves code optimization to take advantage of the

provided hardware resources. Since most of the compute

time in RTM code is in the spatial derivatives, the main

focus in the computer implementation is in the spatial

derivatives operators. In a typical application of

commercial RTM, migrating a single shot gather aimed at

imaging a potential sub-salt target in a deep water

environment, numerical spatial derivatives are calculated

approximately 30,000 times. This operation is repeated for

surveys that contain tens of thousands of recorded shot

gathers. Therefore, the hardware implementation of these

numerical operators plays a crucial factor in any

commercial implementation of RTM PSDM. Due to the

vast amount of computational resources needed, hardware

(1)

(2)

SEG New Orleans Annual Meeting Page 4116

DOI http://dx.doi.org/10.1190/segam2015-5754164.1© 2015 SEG

D
ow

nl
oa

de
d

08
/2

5/
15

 to
 2

3.
30

.6
5.

12
1.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SE

G
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

GPU implementation of recursive operators RTM

accelerators such as GPUs provide a very practical solution

and are successfully used as the compute engine of RTM

PSDM algorithms.

The numerical approximation of the spatial derivatives of

the seismic wavefield is characterized by a small number of

arithmetic operations applied to a large number of data

points. This operation is applied at every point in the

seismic cube, represented on a Cartesian grid. A typical

size of the grid is several Gigabytes (i.e. GB). The main

challenge is to efficiently supply the processing unit with

access to data. The rate of data transfer between the

different types of memory is the most critical part of the

implementation.

To understand the GPU implementation with recursive

operators, and the challenges it presents, we first review the

main elements of the GPU implementation using FD

approximation of the derivatives (Micikevičius, 2009 and

2011).

The 1D FD approximation of the second spatial derivative

reads:

𝜕2𝑓

𝜕𝑥2
[𝑘] ≅ ∑ 𝑎𝑗(𝑓[𝑘 + 𝑗] + 𝑓[𝑘 − 𝑗])

𝑁/2

𝑗=0

Where 𝑓[𝑘] is the function value at grid point 𝑥 = 𝑘𝑑𝑥. 𝑁

is the approximation order with the FD coefficients 𝑎𝑗 .

In a typical efficient 3D implementation, the operations in

Equation 3 are carried out in the 3 spatial directions. For

evaluating the spatial derivative at a point (𝑖𝑥 , 𝑖𝑦 , 𝑖𝑧) in the

calculated volume, we need to use the data values at 𝑁/2

points in each direction around the target point.

To optimize the data access, it is arranged in depth slices.

In each depth slice the X direction is the axis in which the

data is contiguous. The Y direction is the second axis and

the depth (Z) direction is the slowest axis. A GPU thread

block of size 𝐷𝐼𝑀𝑋 ∙ 𝐷𝐼𝑀𝑌 computes the spatial

derivatives of 𝐷𝐼𝑀𝑋 ∙ 𝐷𝐼𝑀𝑌 ∙ 𝑁𝑧 grid points, where 𝑁𝑧 is

the number of points in the volume along the Z direction

(see Figures 1 and 2). Each thread is computing 𝑁𝑧 points

by looping on 𝑁𝑧. At each depth level the derivatives of

𝐷𝐼𝑀𝑋 ∙ 𝐷𝐼𝑀𝑌 points are computed by the thread block.

GPU block shared memory is used for 𝐷𝐼𝑀𝑋 ∙ 𝐷𝐼𝑀𝑌

slices for optimizing the computation of the derivatives in

the X and Y directions. Local memory is used for

computing the vertical derivative.

The main computational effort in applying the recursive

operators is in a term of the form
𝑑0

1+𝛽0∆1
𝑓[𝑗] in Equation 2.

This is solved as a tri-diagonal system of equations.

The solution involves two recursive loops:

aux[0] = f[0];
for(𝑖𝑥=1; 𝑖𝑥<𝑁𝑥; ++𝑖𝑥) {
 aux[𝑖𝑥] = f[𝑖𝑥] - G[𝑖𝑥] * aux[𝑖𝑥-1];
}

d2f[𝑁𝑥-1] = aux[𝑁𝑥-1] * H[𝑁𝑥-1];
for(𝑖𝑥=𝑁𝑥-2; 𝑖𝑥>=0; --𝑖𝑥) {
 d2f[𝑖𝑥] = (aux[𝑖𝑥] - d2f[𝑖𝑥+1]) * H[𝑖𝑥];
}

𝑓[𝑖𝑥] is the data value at a grid point 𝑖𝑥. 𝐻[𝑖𝑥] and 𝐺[𝑖𝑥]
are coefficients designed for an accurate approximation of

the second derivative of 𝑓[𝑖𝑥]. The function 𝑑2𝑓[𝑖𝑥]
becomes a part of the resulting second derivative

approximation at point 𝑖𝑥 after the second loop.

In both forward and the backward loops the result at each

point depends on the result at the previous point, which

makes the loops recursive.

In 3D the same type of operation is applied in each

coordinate direction. The forward and backward loops are

applied in each direction independently. In the GPU

implementation we cannot share data between threads in

the same way as the FD implementation. Using FD, the

loop over the slow axis (Z) is very efficient in terms of

accessing data between global memory and local and

shared memories.

In the recursive operators we can use the same idea as in

FD to fetch the data from global to local memory when

applied to the slow (Z) axis and to the second (Y) axis.

However, special consideration is taken to access the data

in global memory for computing the derivative along the

first (X) axis.

In order to improve the computational performance, the

computation is split into two parts. First the forward loop is

computed. The intermediate result aux is stored. Second,

the backward loop is performed.

The main components for the first stage are:

1. Each thread block works on one depth slice of size 𝑁𝑥 ∙
𝐷𝐼𝑀𝑌 where 𝑁𝑥 is the total number of samples in the X

direction. The computation along the X axis is performed in

chunks of size 𝑆𝑀𝑋, where 𝑆𝑀𝑋 is the number of samples

in the X direction that can fit to shared memory (see Figure

3).

2. A shared memory array of dimensions 𝐷𝐼𝑀𝑌 ∙ 𝑆𝑀𝑋 is

allocated.

(3)

SEG New Orleans Annual Meeting Page 4117

DOI http://dx.doi.org/10.1190/segam2015-5754164.1© 2015 SEG

D
ow

nl
oa

de
d

08
/2

5/
15

 to
 2

3.
30

.6
5.

12
1.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SE

G
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

GPU implementation of recursive operators RTM

3. Data of size 𝐷𝐼𝑀𝑌 ∙ 𝑆𝑀𝑋 is read from global memory

and stored in shared memory. The read is performed by

looping along the Y direction and reading the data that is

contiguous along the X axis.

4. 𝑆𝑀𝑋 samples of the recursive forward loop are

computed using the data from shared memory.

5. The temporary result aux is stored in global memory as

an auxiliary array in a transposed order in which Y is the

fast axis and X is the slower.

6. Steps 3 to 5 are repeated 𝑁𝑥/𝑆𝑀𝑋 times.

In the second stage of the computation, the backward loop

is implemented in chunks of the same size 𝐷𝐼𝑀𝑌 ∙ 𝑆𝑀𝑋.

For each chunk, 𝑆𝑀𝑋 samples of the backward loop are

computed by reading the data from the auxiliary

(transposed) array that is stored in global memory. The

partial result of the backward loop for each chunk is stored

in shared memory. This partial result of the second

derivative can then be used efficiently to complete the

computation in the original order (X axis is fast in global

memory).

Figure 3: At each depth level a thread block of size DIMY

calculates the recursive loops in chunks of size 𝑺𝑴𝑿 ∙
𝑫𝑰𝑴𝒀

FD operators can be implemented on hardware accelerators

in a relative straight forward manner as described above,

but can result with less than optimally imaged seismic data.

This raises the challenge implementing accurate spatial

derivatives such as recursive operators for hardware

accelerators as the core kernel of a RTM PSDM algorithm.

A solution to this challenge uses all the resources provided

in a compute node, including both CPU and GPU memory

and fast data exchange between the two, as well as a

balanced split of computation between CPU cores and GPU

cores. This implementation results with a CPU/GPU RTM

code that is 30% slower than an equivalent high order FD

based algorithm, but will achieve the goal of providing

higher frequency RTM PSDM migrated data with minimal

dispersion.

Example

For illustrating the RTM PSDM recursive operators, we

constructed a salt environment anisotropic TTI model

showing potential exploration targets around and beneath a

salt body. The TTI model is shown in figures 4-6. The

model is 10 miles long and 30,000 ft. deep. The salt body

ranges from 5,000 ft. to 20,000 ft. The subsalt targets are

depths greater than 20,000 ft.

For generating the input dataset, we created a set of 800

simulated shots over the target salt body. Shot point

spacing for the simulation is 123.03 ft., Receiver spacing

41.01 ft. and the cable length is 10Km. Twelve second

recording time was used in the simulation.

The sedimentary velocity field (shown in figure 4) of the

model ranges between water velocity and 13,000 ft/s. The

salt velocity is 14,471 ft/s. The anisotropy delta field

(shown in figure 5) ranges between 0% - 10% and the

anisotropic epsilon field ranges between 0% -16%. The

anisotropic dip field (show in figure 6) was calculated

based on the sedimentary section dips and ranges from -60

Y

SMX

DIMY

X

Figure 1: The 3D volume is arranged in depth slices.

The data is contiguous in the X direction. Y is the

second direction and Z is the slow axis.

Z Y

X

DIMX

DIMY

Figure 2: A depth slice is divided to GPU thread

blocks of size 𝑫𝑰𝑴𝑿 ∙ 𝑫𝑰𝑴𝒀

SEG New Orleans Annual Meeting Page 4118

DOI http://dx.doi.org/10.1190/segam2015-5754164.1© 2015 SEG

D
ow

nl
oa

de
d

08
/2

5/
15

 to
 2

3.
30

.6
5.

12
1.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SE

G
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

GPU implementation of recursive operators RTM

degrees to +60 degrees. The common shot TTI PSDM

results of the simulated dataset using the recursive

operators RTM is shown in figure 7. The model layers are

displayed in figure 7 to illustrate the accuracy of the PSDM

algorithm.

Conclusions

RTM PSDM is widely used today to assist in the imaging

of both exploration and production projects. In most cases,

however, the full frequency range is not input to RTM due

to (a) the cost implication and (b) the risk of producing

numerical dispersion. In this study we tackle these two

limitations by (a) introducing a new derivative operator that

can be used for migrating higher frequencies with minimal

numerical dispersion, and (b) implementing these operators

on a GPU architecture so it can be used cost effectively in a

production environment. Our observation is that by

combining a more accurate numerical scheme and a better

computer optimization, the resulting RTM PSDM can be

more reliable and the additional computational cost can be

offset by use of advanced accelerators such as GPUs.

 -60

 -30

 -10

60

 30

Figure 6: Dip model. The dip model was constructed

by calculation of the normal to the layers geometry.

10%

8%

6%

0%

4%

Figure 7: TTI RTM PSDM section produced using the

minimal dispersion recursive spatial operators.

 14,000

12,000

 10,000

 3,000

 6,000

Figure 4: Salt related velocity model. Sedimentary

layers are truncated against the salt dome.

Figure 5: Anisotropic delta model. The anisotropic

epsilon field is 1.6 greater than the delta field.

SEG New Orleans Annual Meeting Page 4119

DOI http://dx.doi.org/10.1190/segam2015-5754164.1© 2015 SEG

D
ow

nl
oa

de
d

08
/2

5/
15

 to
 2

3.
30

.6
5.

12
1.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SE

G
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

EDITED REFERENCES
Note: This reference list is a copyedited version of the reference list submitted by the author. Reference lists for the 2015
SEG Technical Program Expanded Abstracts have been copyedited so that references provided with the online metadata for
each paper will achieve a high degree of linking to cited sources that appear on the Web.

REFERENCES

Kosloff, D., R. Pestana, and H. Tal-Ezer, 2008, Numerical solution of the constant density acoustic wave
equation by implicit spatial derivative operators: 78th Annual International Meeting, SEG, Expanded
Abstracts, 2057–2061.

Micikevicius, P., 2009, 3D finite difference computation on GPUs using CUDA: Proceedings of the 2nd
Workshop on General Purpose Processing on Graphics Processing Units (GPGPU), 79–84,
doi:10.1145/1513895.1513905.

Micikevicius, P., 2011, Stencil computation on GPU for seismic migration isotropic, VTI, and TTI RTM
kernels: SEG Workshop on High Performance Computing in the Geosciences,
http://www.seg.org/documents/4670773/4673682/Stencil+Computation+on+GPU+for+Seismic+Mig
ration.

SEG New Orleans Annual Meeting Page 4120

DOI http://dx.doi.org/10.1190/segam2015-5754164.1© 2015 SEG

D
ow

nl
oa

de
d

08
/2

5/
15

 to
 2

3.
30

.6
5.

12
1.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SE

G
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

http://dx.doi.org/10.1145/1513895.1513905

