Modern high performance computing (HPC) data centers are key to solving some of the world’s most important scientific and engineering challenges. NVIDIA® Tesla® accelerated computing platform powers these modern data centers with the industry-leading applications to accelerate HPC and AI workloads. The Tesla V100 GPU is the engine of the modern data center, delivering breakthrough performance with fewer servers, less power consumption, and reduced networking overhead, resulting in total cost savings of 5X-10X. Each GPU-accelerated server provides the performance of dozens of commodity CPU servers, delivering a dramatic boost in application throughput. Improved performance and time-to-solution can also have significant favorable impacts on revenue and productivity.

Every HPC data center can benefit from the Tesla platform. Over 580 HPC applications in a broad range of domains are optimized for GPUs, including all 15 of the top 15 HPC applications and every major deep learning framework.

Over 580 HPC applications and all deep learning frameworks are GPU-accelerated.

- To get the latest catalog of GPU-accelerated applications visit: www.nvidia.com/teslaapps
- To get up and running fast on GPUs with a simple set of instructions for a wide range of accelerated applications visit: www.nvidia.com/gpu-ready-apps
Computational finance applications are essential to the success of global financial service firms when performing market and counterparty risk analytics, asset pricing, and portfolio risk management analysis. This analysis requires numerical methods that are computationally intensive. And because time is money in financial analysis, several of the leading computational finance applications are GPU-accelerated. Computational finance applications using Tesla V100 GPUs can improve performance by over 50X and save up to 80% in server and infrastructure acquisition costs.

KEY FEATURES OF THE TESLA PLATFORM AND V100 FOR COMPUTATIONAL FINANCE

- Servers with V100 outperform CPU servers by nearly 9X based on STAC-A2 benchmark results
- Top Computational Finance applications are GPU-accelerated
- Up to 7.8 TFLOPS per second of double precision performance per GPU
- Up to 32 GB of memory capacity per GPU
- Up to 900 GB/s memory bandwidth per GPU

View all related applications at:
STAC-A2 Benchmark Performance Results
8X V100 GPU Server vs Dual Skylake Platinum 8180 Sever

1 Server with V100 (16 GB) GPUs

STAC-A2
Financial risk management benchmark created by leading global banks working with the Securities Technology Analysis Center (STAC) used to assess financial compute solutions

VERSION
STAC-A2 [Beta 2]

ACCELERATED FEATURES
Full framework accelerated

SCALABILITY
Multi-GPU

MORE INFORMATION
www.STACresearch.com/nvidia

STAC-A2
Financial risk management benchmark created by leading global banks working with the Securities Technology Analysis Center (STAC) used to assess financial compute solutions

VERSION
STAC-A2 [Beta 2]

ACCELERATED FEATURES
Full framework accelerated

SCALABILITY
Multi-GPU

MORE INFORMATION
www.STACresearch.com/nvidia
Deep Learning is solving important scientific, enterprise, and consumer problems that seemed beyond our reach just a few years back. Every major deep learning framework is optimized for NVIDIA GPUs, enabling data scientists and researchers to leverage artificial intelligence for their work. When running deep learning training and inference frameworks, a data center with Tesla V100 GPUs can save over 90% in server and infrastructure acquisition costs.

**KEY FEATURES OF THE TESLA PLATFORM AND V100 FOR DEEP LEARNING TRAINING**

- PyTorch, TensorFlow, and MxNet are up to 50x faster with Tesla V100 compared to P100
- 100% of the top deep learning frameworks are GPU-accelerated
- Up to 125 TFLOPS of TensorFlow operations per GPU
- Up to 32 GB of memory capacity per GPU
- Up to 900 GB/s memory bandwidth per GPU

View all related applications at: [www.nvidia.com/deep-learning-apps](http://www.nvidia.com/deep-learning-apps)
**PyTorch Deep Learning Framework**

Training on 8X V100 Server vs 8X P100 Server

- **Inception V3**: 2.9X Avg. Speedup
- **ResNet-50**: 3.5X Avg. Speedup
- **VGG16**: 2.6X
- **GNMT**: 2.8X

**Speedup vs. Server with 8X P100 SXM2**

*CPU Server: Dual-Socket Xeon E5-2698 v4 @ 3.6GHz, 512GB System Memory | GPU servers as shown Framework: PyTorch v0.4.1, Mixed Precision | NVIDIA CUDA® 10.0.130, NCCL 2.3.4, cuDNN 7.3.0.29, cuBLAS 10.0.130 | NVIDIA Driver: 384.145 | Batch sizes: V100 PCIe: Inception V3 192, ResNet-50 256, VGG16 192, GNMT 192; V100 SXM2: Inception V3 384, ResNet 256, VGG16 256, GNMT 192; P100 SXM2: Inception V3 96, ResNet-50 128, VGG16 96, GNMT 128.*

**NVIDIA TensorRT 4**

Massive Throughput at Low Latency

**CNN Throughput at Low Latency (ResNet-50)**

- **Target Latency 7ms**

- **CPU + OpenVINO**: 7ms
- **Tesla T4 + TensorRT**: 7ms
- **Tesla V100 + TensorRT**: 7ms

*CPU throughput based on measured inference throughput performance on Skylake-based Xeon Scalable Processor Gold 6140 CPU | GPU Server config: Dual-socket Xeon Gold 6140 @ 2.3GHz, and a single NVIDIA® Tesla™ T4 or V100, GPU running TensorRT 5 GA vs. Intel OpenVINO Toolkit | NVIDIA CUDA® 10.0.130, NCCL 2.3.4, cuDNN 7.3.0.29, cuBLAS 10.0.130 | NVIDIA Driver: 384.145 | Batch sizes: T4: ResNet-50 28, GoogleNet 29; V100: ResNet-50 41, GoogleNet 66.*
NVIDIA TensorRT 4
Massive Throughput at Low Latency

<table>
<thead>
<tr>
<th>Throughput Images Per Second (In Thousands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 5 10 15 20 25 30 35 40 45 50</td>
</tr>
</tbody>
</table>

CNN Throughput at Low Latency (GoogleNet)

CPU + OpenVINO
Tesla T4 + TensorRT
Tesla V100 + TensorRT

Target Latency 7ms

NVIDIA TensorRT 4
Massive Throughput at Low Latency

<table>
<thead>
<tr>
<th>Throughput Images Per Second (In Thousands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0.5 1 1.5 2 2.5 3 3.5 4 5 6 7 8 9 10</td>
</tr>
</tbody>
</table>

CNN Throughput at Low Latency (VGG19)

CPU + OpenVINO
Tesla T4 + TensorRT
Tesla V100 + TensorRT

Target Latency 7ms

CPU throughput based on measured inference throughput performance on Skylake-based Xeon Scalable Processor Gold 6140 CPU | GPU Server config: Dual-socket Xeon Gold 6140 @ 2.30GHz, and a single NVIDIA® Tesla® T4 or V100, GPU running TensorRT 5.2 GA vs. Intel OpenVINO Toolkit | NVIDIA CUDA® 10.0.130, NCCL 2.3.4, cuDNN 7.3.0.29, cuBLAS 10.0.130 | NVIDIA Driver: 384.145 | Batch sizes: T4: ResNet-50 28, GoogleNet 29, V100: ResNet-50 41, GoogleNet 66.
Engineering simulations are key to developing new products across industries by modeling flows, heat transfers, finite element analysis and more. Many of the top Engineering applications are accelerated with GPUs today. When running Engineering applications, a data center with NVIDIA® Tesla® V100 GPUs can save over 70% in software licensing costs and 60% in server and infrastructure acquisition costs.

**KEY FEATURES OF THE TESLA PLATFORM AND V100 FOR ENGINEERING**

- Servers with Tesla V100 replace up to 34 CPU servers for applications such as FUN3D, SIMULIA Abaqus and ANSYS FLUENT
- The top engineering applications are GPU-accelerated
- Up to 7.8 TFLOPS of double precision floating point performance per GPU
- Up to 32 GB of memory capacity per GPU
- Up to 900 GB/s memory bandwidth per GPU
**SIMULIA Abaqus Performance Equivalency**

Single GPU Server vs Multiple Skylake CPU-Only Servers

CPU Server: Dual Xeon Gold 6140 @ 2.30GHz, GPU Server: Same as CPU server with NVIDIA® Tesla® V100 PCIe | NVIDIA CUDA® Version: 7.5 | Dataset: LS-EPP-Combined-WC-MkI (RR) | To arrive at CPU node equivalence, we use measured benchmark with up to 8 CPU nodes. Then we use linear scaling to scale beyond 8 nodes.

**ANSYS Fluent Performance Equivalency**

Single GPU Server vs Multiple Skylake CPU-Only Servers

CPU Server: Dual Xeon Gold 6140 @ 2.30GHz, GPU Server: Same as CPU server with NVIDIA® Tesla® V100 PCIe | NVIDIA CUDA® Version: 6.8 | Dataset: Water Jacket | To arrive at CPU node equivalence, we use measured benchmark with up to 8 CPU nodes. Then we use linear scaling to scale beyond 8 nodes.
**FUN3D Performance Equivalence**

Single GPU Server vs Multiple Skylake CPU-Only Servers

![Graph showing performance equivalence between single GPU server and multiple CPU-only servers](image)

- 2X V100
- 4X V100
- 8X V100

CPU Server: Dual Xeon Gold 6140 @ 2.30GHz, GPU Servers: Same as CPU server with NVIDIA® Tesla® V100 PCIe or V100 SXM2 on 8X V100 config | NVIDIA CUDA® Version: 9.2.148 | Dataset: dpw_wbt0_crs-3.8Mn_5_merged | To arrive at CPU node equivalence, we use linear scaling to scale beyond 1 node.

**FUN3D**

Suite of tools for modeling fluid flow, actively developed at NASA for Aeronautics and Space Technology

**VERSION**

13.3

**ACCELERATED FEATURES**

Full range of Mach number regimes for the Reynolds-averaged Navier Stokes (RANS) formulation

**SCALABILITY**

Multi-GPU and Multi-Node

**MORE INFORMATION**

https://fun3d.larc.nasa.gov
Geoscience simulations are key to the discovery of oil and gas and performing geological modeling. Many of the top geoscience applications are accelerated with GPUs today. When running Geoscience applications, a data center with Tesla V100 GPUs can save over 90% in server and infrastructure acquisition costs.

**KEY FEATURES OF THE TESLA PLATFORM AND V100 FOR GEOSCIENCE**

- Servers with V100 replace up to 124 CPU servers for applications such as RTM and SPECFEM3D
- Top Geoscience applications are GPU-accelerated
- Up to 15.7 TFLOPS of single precision floating point performance
- Up to 32 GB of memory capacity per GPU
- Up to 900 GB/s memory bandwidth per GPU

View all related applications at:
**RTM Performance Equivalence**
Single GPU Server vs Multiple Skylake CPU-Only Servers

![RTM Performance Equivalence Chart]

CPU Server: Dual Xeon Gold 6140 @ 2.30GHz, GPU Servers: Same as CPU server with NVIDIA® Tesla® V100 PCIe or V100 SXM2 on 8X V100 config | NVIDIA CUDA® Version: 9.2.148 | Dataset: Isotropic Radius 4
To arrive at CPU node equivalence, we use linear scaling to scale beyond 1 node.

---

**SPECFEM3D Performance Equivalence**
Single GPU Server vs Multiple Skylake CPU-Only Servers

![SPECFEM3D Performance Equivalence Chart]

CPU Server: Dual Xeon Gold 6140 @ 2.30 GHz, GPU Servers: Same as CPU server with NVIDIA® Tesla® V100 PCIe | NVIDIA CUDA® Version: 10.0.130 | Dataset: four_material_simple_model
To arrive at CPU node equivalence, we use linear scaling to scale beyond 1 node.

---

**RTM**
Reverse time migration (RTM) modeling is a critical component in the seismic processing workflow of oil and gas exploration.

**VERSION**
2018

**ACCELERATED FEATURES**
Batch algorithm

**SCALABILITY**
Multi-GPU and Multi-Node

---

**SPECFEM3D**
Simulates Seismic wave propagation

**VERSION**
github_a2d23d27

**SCALABILITY**
Multi-GPU and Single-Node

**MORE INFORMATION**
https://geodynamics.org/cig/software/specfem3d_globe
Benchmarks provide an approximation of how a system will perform at production-scale and help to assess the relative performance of different systems. The top benchmarks have GPU-accelerated versions and can help you understand the benefits of running GPUs in your data center.

**KEY FEATURES OF THE TESLA PLATFORM AND V100 FOR BENCHMARKING**

- Servers with Tesla V100 replace up to 41 CPU servers for benchmarks such as Cloverleaf, MiniFE, Linpack, and HPCG
- The top HPC benchmarks are GPU-accelerated
- Up to 7.8 TFLOPS of double precision floating point performance per GPU
- Up to 32 GB of memory capacity per GPU
- Up to 900 GB/s memory bandwidth per GPU
**Cloverleaf Performance Equivalency**

Single GPU Server vs Multiple Skylake CPU-Only Servers

CPU Server: Dual Xeon Gold 6140 @ 2.30GHz, GPU Servers: Same as CPU server with NVIDIA® Tesla® V100 PCIe | NVIDIA CUDA® Version: 9.0.103 | Dataset: bm32 | To arrive at CPU node equivalence, we use measured benchmark with up to 8 CPU nodes. Then we use linear scaling to scale beyond 8 nodes.

**HPCG Performance Equivalence**

Single GPU Server vs Multiple Skylake CPU-Only Servers

CPU Server: Dual Xeon Gold 6140 @ 2.30 GHz, GPU Servers: Same as CPU server with NVIDIA® Tesla® V100 PCIe | NVIDIA CUDA® Version: 9.0.103 | Dataset: 256x256x256 local size | To arrive at CPU node equivalence, we use linear scaling to scale beyond 1 node.
Linpack Performance Equivalency
Single GPU Server vs Multiple Skylake CPU-Only Servers

CPU Server: Dual Xeon Gold 6140 @ 2.30 GHz, GPU Servers: Same as CPU server with NVIDIA® Tesla® V100 PCIe | NVIDIA CUDAC® Version: 9.0.103 | Dataset: HPL.dat | To arrive at CPU node equivalence, we use a measured benchmark with up to 8 CPU nodes. Then we use linear scaling to scale beyond 8 nodes.

MiniFE Performance Equivalency
Single GPU Server vs Multiple Skylake CPU-Only Servers

CPU Server: Dual Xeon Gold 6140 @ 2.30 GHz, GPU Servers: Same as CPU server with NVIDIA® Tesla® V100 PCIe | NVIDIA CUDAC® Version: 9.0.103 | Dataset: 350x350x350 | To arrive at CPU node equivalence, we use a measured benchmark with up to 8 CPU nodes. Then we use linear scaling to scale beyond 8 nodes.

Linpack
Benchmark – Measures floating point computing power

Version
2.1

Accelerated Features
All

Scalability
Multi-Node and Multi-Node

More Information
www.top500.org/project/linpack

MiniFE
Benchmark – Mini-App
Finite element analysis

Version
0.3

Accelerated Features
All

Scalability
Multi-GPU

More Information
https://mantevo.org/about/applications
Microscopy has many applications in the forensic sciences, requiring significant computing resources to process the images that are produced. Today, GPUs accelerate the top microscopy applications, and data centers running these applications with Tesla V100 GPUs can see a reduction of over 50% in server and infrastructure acquisition costs.

**KEY FEATURES OF THE TESLA PLATFORM AND V100 FOR QC**

- A single server with Tesla V100 GPUs replaces up to 19 CPU servers for applications such as Relion
- Key math libraries like FFT and BLAS
- Up to 7.8 TFLOPS per second of double precision performance per GPU
- Up to 32 GB of memory capacity per GPU
- Up to 900 GB/s of memory bandwidth per GPU

View all related applications at:  
www.nvidia.com/teslaapps
RELION
Stand-alone computer program that employs an empirical Bayesian approach to refinement of (multiple) 3D reconstructions or 2D class averages in electron cryo-microscopy (cryo-EM)

VERSION
2.0.3

ACCELERATED FEATURES
Image classification, high resolution refinement and template-based particle selection

SCALABILITY
Multi-GPU and Single-Node

Relion Performance Equivalency
Single GPU Server vs Multiple Skylake CPU-Only Servers

CPU Server: Dual Xeon Gold 6140 @ 2.30 GHz, GPU Servers: Same as CPU server with NVIDIA® Tesla® V100 PCIe | NVIDIA CUDA® Version: 9.0.176 | Dataset: Plasmodium Ribosome | To arrive at CPU node equivalence, we use a measured benchmark with up to 8 CPU nodes. Then we use linear scaling to scale beyond 8 nodes.
Molecular Dynamics (MD) represents a large share of the workload in an HPC data center. 100% of the top MD applications are GPU-accelerated, enabling scientists to run simulations they couldn’t perform before with traditional CPU-only versions of these applications. When running MD applications, a data center with Tesla V100 GPUs can save over 90% in server and infrastructure acquisition costs.

KEY FEATURES OF THE TESLA PLATFORM AND V100 FOR MD

- Servers with V100 replace over 155 CPU servers for applications such as Amber, HOOMD-blue, LAMMPS, and NAMD
- 100% of the top MD applications are GPU-accelerated
- Key math libraries like FFT and BLAS
- Up to 15.7 TFLOPS of single precision performance per GPU
- Up to 32 GB of memory capacity per GPU
- Up to 900 GB/s of memory bandwidth per GPU

View all related applications at:
www.nvidia.com/molecular-dynamics-apps
AMBER Performance Equivalency
Single GPU Server vs Multiple Skylake CPU-Only Servers

CPU server: Dual Xeon Gold 6140 @ 2.30 GHz, GPU servers: same CPU server with NVIDIA® Tesla® V100 PCIe or V100 SXM2 on 8X V100 config | NVIDIA CUDA® version: CUDA 10.0.130 | Dataset: PME-Cellulose_NVE | To arrive at CPU node equivalence, we use a measured benchmark with up to 8 CPU nodes. Then we use linear scaling to scale beyond 8 nodes.

HOOMD-blue Performance Equivalency
Single GPU Server vs Multiple Skylake CPU-Only Servers

CPU Server: Dual Xeon Gold 6140 @ 2.30 GHz, GPU Servers: same CPU server with NVIDIA® Tesla® V100 PCIe or V100 SXM2 on 8X V100 config | NVIDIA CUDA® Version: CUDA 9.0.176; Dataset: microsphere | To arrive at CPU node equivalence, we use measured benchmark with up to 8 CPU nodes. Then we use linear scaling to scale beyond 8 nodes.
**LAMMPS Performance Equivalency**
Single GPU Server vs Multiple Skylake CPU-Only Servers

CPU Server: Dual Gold 6140 @ 2.30 GHz, GPU Servers: Same as CPU server with NVIDIA® Tesla® V100 PCIe or V100 SXM2 on 8X V100 config | NVIDIA CUDA® Version: 10.0.130 | Dataset: Atomic-Fluid Lennard-Jones 2.5 Cutoff | To arrive at CPU node equivalence, we use a measured benchmark with up to 8 CPU nodes. Then we use linear scaling to scale beyond 8 nodes.

**NAMD Performance Equivalency**
Single GPU Server vs Multiple Skylake CPU-Only Servers

CPU Server: Dual Xeon Gold 6140 @ 2.30GHz, GPU Servers: same CPU server with NVIDIA® Tesla® V100 PCIe | NVIDIA CUDA® Version: CUDA 10.0.130 | Dataset: STMV | To arrive at CPU node equivalence, we use measured benchmark with up to 8 CPU nodes. Then we use linear scaling to scale beyond 8 nodes.
Quantum chemistry (QC) simulations are key to the discovery of new drugs and materials and consume a large part of the HPC data center’s workload. 60% of the top QC applications are accelerated with GPUs today. When running QC applications, a data center’s workload with Tesla V100 GPUs can save over 85% in server and infrastructure acquisition costs.

**KEY FEATURES OF THE TESLA PLATFORM AND V100 FOR QC**

- Servers with V100 replace up to 37 CPU servers for applications such as Quantum Espresso and VASP
- 60% of the top QC applications are GPU-accelerated
- Key math libraries like FFT and BLAS
- Up to 7.8 TFLOPS per second of double precision performance per GPU
- Up to 32 GB of memory capacity per GPU
- Up to 900 GB/s of memory bandwidth per GPU

View all related applications at:
www.nvidia.com/quantum-chemistry-apps
Quantum Espresso Performance Equivalency
Single GPU Server vs Multiple Skylake CPU-Only Servers

CPU Server: Dual Xeon Gold 6140 @ 2.30 GHz, GPU Servers: Same as CPU server with NVIDIA® Tesla® V100 PCIe | NVIDIA CUDA® Version: 9.2.88 | Dataset: AUSURF112 | To arrive at CPU node equivalence, we use a measured benchmark with up to 8 CPU nodes. Then we use linear scaling to scale beyond 8 nodes.

VASP Performance Equivalency
Single GPU Server vs Multiple Skylake CPU-Only Servers

CPU Server: Dual Xeon Gold 6140 @ 2.30 GHz, GPU servers: same CPU server with NVIDIA® Tesla® V100 PCIe or V100 SXM2 on 8X V100 config | NVIDIA CUDA® version: CUDA 9.0.176 | Dataset: B.h.R105 | To arrive at CPU node equivalence, we use measured benchmark with up to 8 CPU nodes. Then we use linear scaling to scale beyond 8 nodes.
From fusion energy to high energy particles, physics simulations span a wide range of applications in the HPC data center. All of the top physics applications are GPU-accelerated, enabling insights previously not possible. A data center with Tesla V100 GPUs can save over 90% in server acquisition cost when running GPU-accelerated physics applications.

**KEY FEATURES OF THE TESLA PLATFORM AND V100 FOR PHYSICS**

- Servers with V100 replace up to 116 CPU servers for applications such as Chroma, GTC, MILC, and QUDA
- Most of the top physics applications are GPU-accelerated
- Up to 7.8 TFLOPS of double precision floating point performance per GPU
- Up to 32 GB of memory capacity per GPU
- Up to 900 GB/s memory bandwidth per GPU

View all related applications at: [www.nvidia.com/physics-apps](http://www.nvidia.com/physics-apps)
**Chroma Performance Equivalency**
Single GPU Server vs Multiple Skylake CPU-Only Servers

CPU Server: Dual Xeon Gold 6140 @ 2.30 GHz, GPU Servers: Same as CPU server with NVIDIA® Tesla® V100 PCIe | NVIDIA CUDA® Version: 9.0.176 | Dataset: sscl21_24_128 | To arrive at CPU node equivalence, we use a measured benchmark with up to 8 CPU nodes. Then we use linear scaling to scale beyond 8 nodes.

**GTC Performance Equivalence**
Single GPU Server vs Multiple Skylake CPU-Only Servers

CPU Server: Dual Xeon Gold 6140 @ 2.30 GHz, GPU Servers: Same as CPU server with NVIDIA® Tesla® V100 PCIe | NVIDIA CUDA® Version: 10.0.130 | Dataset: mpi#proc.in | To arrive at CPU node equivalence, we use a measured benchmark with up to 8 CPU nodes. Then we use linear scaling to scale beyond 8 nodes.
MILC Performance Equivalence
Single GPU Server vs Multiple Skylake CPU-Only Servers

CPU Server: Dual Xeon Gold 6140 @ 2.30 GHz, GPU Servers: Same as CPU server with NVIDIA® Tesla® V100 PCIe or NVIDIA CUDA® Version: 10.0.130 | Dataset: APEX Medium | To arrive at CPU node equivalence, we use a measured benchmark with up to 8 CPU nodes. Then we use linear scaling to scale beyond 8 nodes.

QUDA Performance Equivalence
Single GPU Server vs Multiple Broadwell CPU-Only Servers

CPU Server: Dual Xeon Gold 6140 @ 2.30 GHz, GPU Servers: Same as CPU server with NVIDIA® Tesla® V100 PCIe or NVIDIA CUDA® Version: 9.0.103 | Dataset: Dslash Wilson-Clove, Precision: Single; Gauge Compression/Recon: 12; Problem Size 32x32x32x64 | To arrive at CPU node equivalence, we use a measured benchmark with up to 8 CPU nodes. Then we use linear scaling to scale beyond 8 nodes.

MILC
Lattice quantum chromodynamics (LQCD) codes simulate how elemental particles are formed and bound by the “strong force” to create larger particles like protons and neutrons.

VERSION
2018

ACCELERATED FEATURES
Staggered fermions, Krylov solvers, gauge-link fattening

SCALABILITY
Multi-GPU and Multi-Node

MORE INFORMATION
www.nvidia.com/milc

QUDA
A library for lattice quantum chromodynamics on GPUs

VERSION
2017

ACCELERATED FEATURES
All

SCALABILITY
Multi-GPU and Multi-Node

MORE INFORMATION
www.nvidia.com/quda
Numerical weather prediction (NWP) represents a large segment of HPC because reliable weather forecasts help save lives in extreme weather events. NWP also drives economic decisions in industries such as aviation, energy and utilities, insurance, retail, and others. When running weather and climate applications, a data center’s workload with Tesla V100 GPUs can reduce infrastructure acquisition costs by over 50%.

**KEY FEATURES OF THE TESLA PLATFORM AND V100 FOR WEATHER AND CLIMATE**

- Servers with V100 replace up to 11 CPU servers for applications such as Weather Research and Forecasting (WRF)
- Leading Weather and Climate applications are GPU-accelerated
- Key math libraries like FFT and BLAS
- Up to 7.8 TFLOPS per second of double precision performance per GPU
- Up to 32 GB of memory capacity per GPU
- Up to 900 GB/s memory bandwidth per GPU

View all related applications at:
www.nvidia.com/teslaapps
WEATHER RESEARCH AND FORECASTING (WRF)
Numerical weather prediction system designed for both atmospheric research and operational forecasting applications

VERSION
WRFg 3.7.1 developed by NVIDIA

ACCELERATED FEATURES
Dynamics and several Physics

SCALABILITY
Multi-GPU and Multi-Node

MORE INFORMATION
https://www.mmm.ucar.edu/weather-research-and-forecasting-model

WRF Performance Equivalency
Single GPU Server vs Multiple Skylake CPU-Only Servers

CPU Server: Dual Xeon Gold 6140 @ 2.30GHz, GPU Servers: Same as CPU server with NVIDIA® Tesla® V100 PCIe | NVIDIA CUDA® Version: 9.2.148 | Dataset: Conus_2.5k_JA | To arrive at CPU node equivalence, we use measured benchmark with up to 8 CPU nodes. Then we use linear scaling to scale beyond 8 nodes.
## TESLA V100 PRODUCT SPECIFICATIONS

<table>
<thead>
<tr>
<th></th>
<th>NVIDIA Tesla V100 for PCIe-Based Servers</th>
<th>NVIDIA Tesla V100 for NVLink-Optimized Servers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double-Precision</td>
<td>up to 7 TFLOPS</td>
<td>up to 7.8 TFLOPS</td>
</tr>
<tr>
<td>Performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-Precision</td>
<td>up to 14 TFLOPS</td>
<td>up to 15.7 TFLOPS</td>
</tr>
<tr>
<td>Performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep Learning</td>
<td>up to 112 TFLOPS</td>
<td>up to 125 TFLOPS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NVIDIA NVLink™</td>
<td></td>
<td>300 GB/s</td>
</tr>
<tr>
<td>Interconnect Bandwidth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCIe x 16 Interconnect</td>
<td>32 GB/s</td>
<td>32 GB/s</td>
</tr>
<tr>
<td>Bandwidth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoWoS HBM2 Stacked</td>
<td>32 GB / 16 GB</td>
<td>32 GB / 16 GB</td>
</tr>
<tr>
<td>Memory Capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoWoS HBM2 Stacked</td>
<td>900 GB/s</td>
<td>900 GB/s</td>
</tr>
<tr>
<td>Memory Bandwidth</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Assumptions and Disclaimers

The percentage of top applications that are GPU-accelerated is from top 50 app list in the i360 report: HPC Support for GPU Computing.


The number of CPU nodes required to match single GPU node is calculated using lab performance results of the GPU node application speed-up and the Multi-CPU node scaling performance.