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Introduction 

Nearly a decade ago, NVIDIA® pioneered the use of GPUs to accelerate computationally-intensive 
workloads with the introduction of the G80 GPU and the NVIDIA® CUDA® parallel computing platform. 
Today, NVIDIA® Tesla® GPUs accelerate thousands of High Performance Computing (HPC) applications 
across many areas including computational fluid dynamics, medical research, machine vision, financial 
modeling, quantum chemistry, energy discovery, and several others.  

NVIDIA Tesla GPUs are installed in many of the world’s top supercomputers, accelerating discovery and 
enabling increasingly complex simulations across multiple domains. Datacenters are using NVIDIA Tesla 
GPUs to speed up numerous HPC and Big Data applications, while also enabling leading-edge Artificial 
Intelligence (AI) and Deep Learning systems.  

NVIDIA’s new NVIDIA Tesla P100 accelerator (see Figure 1) using the groundbreaking new NVIDIA® 
Pascal™ GP100 GPU takes GPU computing to the next level. This paper details both the Tesla P100 
accelerator and the Pascal GP100 GPU architectures.  

Also discussed is NVIDIA’s powerful new DGX-1 server that utilizes eight Tesla P100 accelerators, 
effectively an AI supercomputer in a box. The DGX-1 is purpose-built to assist researchers advancing AI, 
and data scientists requiring an integrated system for Deep Learning.  

 

Figure 1. NVIDIA Tesla P100 with Pascal GP100 GPU 
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Tesla P100: Revolutionary Performance and 
Features for GPU Computing 

With a 15.3 billion transistor GPU, a new high performance interconnect that greatly accelerates GPU 
peer-to-peer and GPU-to-CPU communications, new technologies to simplify GPU programming, and 
exceptional power efficiency, Tesla P100 is not only the most powerful, but also the most architecturally 
complex GPU accelerator architecture ever built.  

Key features of Tesla P100 include:  

 Extreme performance 
Powering HPC, Deep Learning, and many more GPU Computing areas 

 NVLink™ 
NVIDIA’s new high speed, high bandwidth interconnect for maximum application scalability 

 HBM2 
Fast, high capacity, extremely efficient CoWoS (Chip-on-Wafer-on-Substrate) stacked memory 
architecture 

 Unified Memory, Compute Preemption, and New AI Algorithms 
Significantly improved programming model and advanced AI software optimized for the Pascal 
architecture; 

 16nm FinFET 
Enables more features, higher performance, and improved power efficiency 
 

 

Figure 2. New Technologies in Tesla P100 

 

 

 

 



GP100 Pascal Whitepaper 
Tesla P100: Revolutionary Performance and 

Features for GPU Computing 

 

NVIDIA Tesla P100 WP-08019-001_v01.1  |  6 

Extreme Performance for High Performance Computing and 
Deep Learning 

Tesla P100 was built to deliver exceptional performance for the most demanding compute applications, 
delivering: 

 5.3 TFLOPS of double precision floating point (FP64) performance 

 10.6 TFLOPS of single precision (FP32) performance 

 21.2 TFLOPS of half-precision (FP16) performance 
 

 

Figure 3. Tesla P100 Significantly Exceeds Compute Performance of Past GPU 
Generations 

In addition to the numerous areas of high performance computing that NVIDIA GPUs have accelerated for 
a number of years, most recently Deep Learning has become a very important area of focus for GPU 
acceleration. NVIDIA GPUs are now at the forefront of deep neural networks (DNNs) and artificial 
intelligence (AI). They are accelerating DNNs in various applications by a factor of 10x to 20x compared to 
CPUs, and reducing training times from weeks to days. In the past three years, NVIDIA GPU-based 
computing platforms have helped speed up Deep Learning network training times by a factor of fifty. In 
the past two years, the number of companies NVIDIA collaborates with on Deep Learning has jumped 
nearly 35x to over 3,400 companies. 

New innovations in our Pascal architecture, including native 16-bit floating point (FP) precision, allow 
GP100 to deliver great speedups for many Deep Learning algorithms. These algorithms do not require 
high levels of floating-point precision, but they gain large benefits from the additional computational 
power FP16 affords, and the reduced storage requirements for 16-bit datatypes.  
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NVLink: Extraordinary Bandwidth for Multi-GPU and GPU-to-
CPU Connectivity  

As GPU-accelerated computing has risen in popularity, more multi-GPU systems are being deployed at all 
levels, from workstations to servers, to supercomputers. Many 4-GPU and 8-GPU system configurations 
are now used to solve bigger and more complex problems. Multiple groups of multi-GPU systems are 
being interconnected using InfiniBand® and 100 Gb Ethernet to form much larger and more powerful 
systems. The ratio of GPUs to CPUs has also increased. 2012’s fastest supercomputer, the Titan located at 
Oak Ridge National Labs, deployed one GK110 GPU per CPU. Today, two or more GPUs are more 
commonly being paired per CPU as developers increasingly expose and leverage the available parallelism 
provided by GPUs in their applications. As this trend continues, PCIe bandwidth at the multi-GPU system 
level becomes a bigger bottleneck.  

To address this issue, Tesla P100 features NVIDIA’s new high-speed interface, NVLink, that provides GPU-
to-GPU data transfers at up to 160 Gigabytes/second of bidirectional bandwidth—5x the bandwidth of 
PCIe Gen 3 x16. Figure 4 shows NVLink connecting eight Tesla P100 Accelerators in a Hybrid Cube Mesh 
Topology. 

 

Figure 4. NVLink Connecting Eight Tesla P100 Accelerators in a  
Hybrid Cube Mesh Topology 
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Figure 5 shows the performance for various workloads, demonstrating the performance scalability a 
server can achieve with up to eight GP100 GPUs connected via NVLink. (Note:  These numbers are 
measured on pre-production P100 GPUs.) 
 

 

Figure 5. Largest Performance Increase with Eight P100s connected via NVLink  

HBM2 High-Speed GPU Memory Architecture  

Tesla P100 is the world’s first GPU architecture to support HBM2 memory. HBM2 offers three times (3x) 
the memory bandwidth of the Maxwell GM200 GPU. This allows the P100 to tackle much larger working 
sets of data at higher bandwidth, improving efficiency and computational throughput, and reduce the 
frequency of transfers from system memory. 

Because HBM2 memory is stacked memory and is located on the same physical package as the GPU, it 
provides considerable space savings compared to traditional GDDR5, which allows us to build denser GPU 
servers more easily than ever before.  
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Figure 6. Tesla P100 with HBM2 Significantly Exceeds Memory Bandwidth of Past GPU 
Generations 

Simplified Programming for Developers with Unified Memory 
and Compute Preemption 

Unified Memory is a significant advancement for NVIDIA GPU computing and a major new hardware and 
software-based feature of the Pascal GP100 GPU architecture. It provides a single, seamless unified 
virtual address space for CPU and GPU memory. Unified Memory greatly simplifies GPU programming and 
porting of applications to GPUs and also reduces the GPU computing learning curve. Programmers no 
longer need to worry about managing data sharing between two different virtual memory systems. 
GP100 is the first NVIDIA GPU to support hardware page faulting, and when combined with new 49-bit 
(512 TB) virtual addressing, allows transparent migration of data between the full virtual address spaces 
of both the GPU and CPU. 

Compute Preemption is another important new hardware and software feature added to GP100 that 
allows compute tasks to be preempted at instruction-level granularity, rather than thread block 
granularity as in prior Maxwell and Kepler GPU architectures. Compute Preemption prevents long-running 
applications from either monopolizing the system (preventing other applications from running) or timing 
out. Programmers no longer need to modify their long-running applications to play nicely with other GPU 
applications. With Compute Preemption in GP100, applications can run as long as needed to process large 
datasets or wait for various conditions to occur, while scheduled alongside other tasks. For example, both 
interactive graphics tasks and interactive debuggers can run in concert with long-running compute tasks. 
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GP100 GPU Hardware Architecture In-Depth 

GP100 was built to be the highest performing parallel computing processor in the world to address the 
needs of the GPU accelerated computing markets serviced by our Tesla P100 accelerator platform. Like 
previous Tesla-class GPUs, GP100 is composed of an array of Graphics Processing Clusters (GPCs), Texture 
Processing Clusters (TPCs), Streaming Multiprocessors (SMs), and memory controllers. A full GP100 
consists of six GPCs, 60 Pascal SMs, 30 TPCs (each including two SMs), and eight 512-bit memory 
controllers (4096 bits total). 

Each GPC inside GP100 has ten SMs. Each SM has 64 CUDA Cores and four texture units. With 60 SMs, 
GP100 has a total of 3840 single precision CUDA Cores and 240 texture units. Each memory controller is 
attached to 512 KB of L2 cache, and each HBM2 DRAM stack is controlled by a pair of memory 
controllers. The full GPU includes a total of 4096 KB of L2 cache.  

Figure 7 shows a full GP100 GPU with 60 SM units (different products can use different configurations of 
GP100). The Tesla P100 accelerator uses 56 SM units. 

 

Figure 7. Pascal GP100 Full GPU with 60 SM Units 
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Exceptional Performance and Power Efficiency 

Delivering higher performance and improving energy efficiency are two key goals for new GPU 
architectures. A number of changes to the SM in the Maxwell architecture improved its efficiency 
compared to Kepler. Pascal has built on this and incorporates additional improvements that allow us to 
increase performance per watt even further over Maxwell. While TSMC’s 16-nm FinFET manufacturing 
process plays an important role, many GPU architectural modifications were also implemented to further 
reduce power consumption while maintaining high performance.  

Table 1. Tesla P100 Compared to Prior Generation Tesla products 

Tesla Products Tesla K40 Tesla M40 Tesla P100 

GPU  GK110 (Kepler) GM200 (Maxwell) GP100 (Pascal) 

SMs 15 24 56 

TPCs 15 24 28 

FP32 CUDA Cores / SM 192 128 64 

FP32 CUDA Cores / GPU 2880 3072 3584 

FP64 CUDA Cores / SM 64 4 32 

FP64 CUDA Cores / GPU 960 96 1792 

Base Clock 745 MHz 948 MHz 1328 MHz 

GPU Boost Clock 810/875 MHz 1114 MHz 1480 MHz 

Peak FP32 GFLOPs1 5040 6840 10600 

Peak FP64 GFLOPs1 1680 210 5300 

Texture Units 240 192 224 

Memory Interface 384-bit GDDR5 384-bit GDDR5 4096-bit HBM2 

Memory Size Up to 12 GB Up to 24 GB 16 GB 

L2 Cache Size 1536 KB 3072 KB 4096 KB 

Register File Size / SM 256 KB 256 KB 256 KB 

Register File Size / GPU 3840 KB 6144 KB 14336 KB 

TDP 235 Watts 250 Watts 300 Watts 

Transistors 7.1 billion 8 billion 15.3 billion 

GPU Die Size 551 mm² 601 mm² 610 mm² 

Manufacturing Process 28-nm 28-nm 16-nm FinFET 

1  The GFLOPS in this chart are based on GPU Boost Clocks. 
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Pascal Streaming Multiprocessor 

GP100’s sixth-generation SM architecture improves CUDA Core utilization and power efficiency, resulting 
in significant overall GPU performance improvements, and allowing higher core clock speeds compared to 
previous GPUs. 

GP100’s SM incorporates 64 single-precision (FP32) CUDA Cores. In contrast, the Maxwell and Kepler SMs 
had 128 and 192 FP32 CUDA Cores, respectively. The GP100 SM is partitioned into two processing blocks, 
each having 32 single-precision CUDA Cores, an instruction buffer, a warp scheduler, and two dispatch 
units. While a GP100 SM has half the total number of CUDA Cores of a Maxwell SM, it maintains the same 
register file size and supports similar occupancy of warps and thread blocks. GP100’s SM has the same 
number of registers as Maxwell GM200 and Kepler GK110 SMs, but the entire GP100 GPU has far more 
SMs, and thus many more registers overall. This means threads across the GPU have access to more 
registers, and GP100 supports more threads, warps, and thread blocks in flight compared to prior GPU 
generations. 

Overall shared memory across the GP100 GPU is also increased due to the increased SM count, and 
aggregate shared memory bandwidth is effectively more than doubled. A higher ratio of shared memory, 
registers, and warps per SM in GP100 allows the SM to more efficiently execute code. There are more 
warps for the instruction scheduler to choose from, more loads to initiate, and more per-thread 
bandwidth to shared memory.  

Figure 8 shows the resulting block diagram of the GP100 SM. 

Compared to Kepler, Pascal’s SM features a simpler datapath organization that requires less die area and 
less power to manage data transfers within the SM. Pascal also provides superior scheduling and 
overlapped load/store instructions to increase floating point utilization. The new SM scheduler 
architecture in GP100 improves upon the advances of the Maxwell scheduler and is even more intelligent, 
providing increased performance and reduced power consumption. Each warp scheduler (one per 
processing block) is capable of dispatching two warp instructions per clock.  

One new capability that has been added to GP100’s FP32 CUDA Cores is the ability to process both 16-bit 
and 32-bit precision instructions and data, as described later in this paper. FP16 operation throughput is 
up to twice FP32 operation throughput. 
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Figure 8. Pascal GP100 SM Unit 

Designed for High-Performance Double Precision 

Double precision arithmetic is at the heart of many HPC applications such as linear algebra, numerical 
simulation, and quantum chemistry. Therefore, one of the key design goals for GP100 was to significantly 
improve the delivered performance for these use cases.  

Each SM in GP100 features 32 double precision (FP64) CUDA Cores, which is one-half the number of FP32 
single precision CUDA Cores. A full GP100 GPU has 1920 FP64 CUDA Cores. This 2:1 ratio of single 
precision (SP) units to double precision (DP) units aligns better with GP100’s new datapath configuration, 
allowing the GPU to process DP workloads more efficiently. Like previous GPU architectures, GP100 
supports full IEEE 754‐2008 compliant single precision and double precision arithmetic, including support 
for the fused multiply‐add (FMA) operation and full speed support for denormalized values. 
 

 Note:  Kepler GK110 had a 3:1 ratio of SP units to DP units. 
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Support for FP16 Arithmetic Speeds Up Deep Learning 

Deep learning is one of the fastest growing fields of computing. It is a critical ingredient in many 
important applications, including real-time language translation, highly accurate image recognition, 
automatic image captioning, autonomous driving object recognition, optimal path calculations, collision 
avoidance, and others. Deep learning is a two-step process.  

 First, a neural network must be trained. 

 Second, the network is deployed in the field to run inference computations, where it uses the results 
of previous training to classify, recognize, and generally process unknown inputs.  

Compared to CPUs, GPUs can provide tremendous performance speedups for Deep Learning training and 
inference.  

Unlike other technical computing applications that require high-precision floating-point computation, 
deep neural network architectures have a natural resilience to errors due to the backpropagation 
algorithm used in their training. In fact, to avoid overfitting a network to a training dataset, approaches 
such as dropout aim at ensuring a trained network generalizes well and is not overly reliant on the 
accuracy of (or errors in) any given unit’s computation.  

Storing FP16 data compared to higher precision FP32 or FP64 reduces memory usage of the neural 
network and thus allows training and deploying of larger networks. Using FP16 computation improves 
performance up to 2x compared to FP32 arithmetic, and similarly FP16 data transfers take less time than 
FP32 or FP64 transfers.  
 

 Note:  In GP100, two FP16 operations can be performed using a single paired-operation instruction. 

 

Architectural improvements in GP100, combined with support for FP16 datatypes allow significantly 
reduced Deep Learning processing times compared to what was achievable just last year. 

Better Atomics 

Atomic memory operations are important in parallel programming, allowing concurrent threads to 
correctly perform read-modify-write operations on shared data structures.  

Kepler featured shared memory atomic operations of the same form as Fermi. Both architectures 
implemented shared memory atomics using a lock/update/unlock pattern that could be expensive in the 
case of high contention for updates to particular locations in shared memory.  

Maxwell improved atomic operations by implementing native hardware support for shared memory 
atomic operations for 32-bit integers, and native shared memory 32-bit and 64-bit compare-and-swap 
(CAS), which can be used to implement other atomic functions with reduced overhead (compared to the 
Fermi and Kepler methods which were implemented in software).  

GP100 builds upon Maxwell by also improving atomic operations using new Unified Memory and NVLink 
features (described in the following paragraphs). The atomic addition operation in global memory has 
been extended to include FP64 data. The atomicAdd() function in CUDA now applies to 32 and 64-bit 
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integer and floating-point data. The rounding mode for floating-point is round-to-nearest-even for all 
floating-point atomic add operations (formerly, FP32 atomic addition used round-to-zero). 

L1/L2 Cache Changes in GP100 

While Fermi and Kepler GPUs featured a 64 KB configurable shared memory and L1 cache that could split 
the allocation of memory between L1 and shared memory functions depending on workload, beginning 
with Maxwell, the cache hierarchy was changed. The GP100 SM has its own dedicated pool of shared 
memory (64 KB/SM) and an L1 cache that can also serve as a texture cache depending on workload. The 
unified L1/texture cache acts as a coalescing buffer for memory accesses, gathering up the data 
requested by the threads of a warp prior to delivery of that data to the warp. 
 

 Note:  One CUDA Thread Block cannot allocate 64 KB of shared memory by itself, but two Thread Blocks 

could use 32 KB each, etc.. 

A dedicated shared memory per SM means applications no longer need to select a preference of the 
L1/shared split for optimal performance–  the full 64 KB per SM is always available for shared memory.  

GP100 features a unified 4096 KB L2 cache that provides efficient, high speed data sharing across the 
GPU. In comparison, GK110’s L2 cache was 1536 KB, while GM200 shipped with 3072 KB of L2 cache. 
With more cache located on-chip, fewer requests to the GPU’s DRAM are needed, which reduces overall 
board power, reduces memory bandwidth demand, and improves performance.  

GPUDirect Enhancements 

Whether you are working through mountains of geological data, or researching solutions to complex 
scientific problems, you need a computing platform that delivers the highest data throughput and lowest 
latency possible. GPUDirect is a capability that enables GPUs within a single computer, or GPUs in 
different servers located across a network, to directly exchange data without needing to go to 
CPU/system memory. 

The RDMA feature in GPUDirect introduced in Kepler GK110 allows third party devices such as InfiniBand 
(IB) adapters, network interface cards (NICs), and SSDs to directly access memory on multiple GPUs within 
the same system, eliminating unnecessary memory copies, dramatically lowering CPU overhead, and 
significantly decreasing the latency of MPI send and receive messages to/from GPU memory. It also 
reduces the demands on system memory bandwidth and frees the GPU DMA engines for use by other 
CUDA tasks.  

GP100 doubles the delivered RDMA bandwidth reading data from the source GPU memory and writing to 
the target NIC memory over PCIe. Doubling the bandwidth of GPUDirect is very important for many use 
cases, especially Deep Learning. In fact, Deep Learning machines have a high ratio of GPUs to CPUs (in 
some cases 8 GPUs per CPU), so it is very important for the GPUs to interact quickly with IO without 
falling back to the CPU for data transfers.   
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Compute Capability 

The GP100 GPU supports the new Compute Capability 6.0. Table 2 compares the parameters of different 
Compute Capabilities for NVIDIA GPU architectures. 

Table 2. Compute Capabilities:  GK110 vs GM200 vs GP100 

GPU Kepler GK110 Maxwell GM200 Pascal GP100 

Compute Capability 3.5 5.2 6.0 

Threads / Warp 32 32 32 

Max Warps / Multiprocessor 64 64 64 

Max Threads / Multiprocessor 2048 2048 2048 

Max Thread Blocks / Multiprocessor 16 32 32 

Max 32-bit Registers / SM 65536 65536 65536 

Max Registers / Block 65536 32768 65536 

Max Registers / Thread 255 255 255 

Max Thread Block Size 1024 1024 1024 

Shared Memory Size / SM 16 KB/32 KB/48 KB 96 KB 64 KB 

Tesla P100: World’s First GPU with HBM2 

As the use of GPUs to accelerate compute applications has risen greatly in recent years, so has the 
appetite for data in many of those applications. Much larger problems are being solved by GPUs, 
requiring much larger datasets and higher demand for DRAM bandwidth. To address this demand for 
higher raw bandwidth, Tesla P100 is the first GPU accelerator to use High Bandwidth Memory 2 (HBM2). 

HBM2 enables a significant boost in DRAM bandwidth by fundamentally changing the way the DRAMs are 
packaged and connected to the GPU.  

Rather than requiring numerous discrete memory chips surrounding the GPU as in traditional GDDR5 GPU 
board designs, HBM2 includes one or more vertical stacks of multiple memory dies. The memory dies are 
linked using microscopic wires that are created with through-silicon vias and microbumps. One 8 Gb 
HBM2 die contains over 5,000 through-silicon via holes. A passive silicon interposer is then used to 
connect the memory stacks and the GPU die. The combination of HBM2 stack, GPU die, and Silicon 
interposer are packaged in a single 55mm x 55mm BGA package. See Figure 9 for an illustration of the 
GP100 and two HBM2 stacks, and Figure 10 for a photomicrograph of an actual P100 with GPU and 
memory. 
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Figure 9. Cross-section Illustrating GP100 adjacent HBM2 stacks 

 

Figure 10. Cross-section Photomicrograph of a P100 HBM2 stack and GP100 GPU 

The photomicrograph in Figure 10 shows a cross-section of a Tesla P100 HBM2 stack and the GP100 GPU. 
The HBM2 stack in the upper left is built out of five die-- a base die and 4 memory die above it. The top 
memory die layer is very thick. When assembled, the top die and GPU are ground to the same height to 
present a coplanar surface for a heat sink. 

Compared to the prior HBM1 generation, HBM2 offers higher memory capacity and memory bandwidth. 
HBM2 supports four or eight DRAM dies per stack, while HBM1 only supports four DRAM dies per stack. 
HBM2 supports up to 8 Gb per DRAM die, while HBM1 supports only 2 Gb per die. Where HBM1 was 
limited to 125 GB/sec of bandwidth per stack, P100 supports 180GB/sec per stack with HBM2. 

As shown in the GP100 full-chip block diagram (Figure 7), the GP100 GPU connects to four HBM2 DRAM 
stacks. Two 512-bit memory controllers connect to each HBM2 stack for an effective 4096-bit-wide HBM2 
memory interface. Initially, Tesla P100 accelerators will ship with four 4-die HBM2 stacks, for a total of 16 
GB of HBM2 memory. 
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Memory Resilience 

Another benefit of HBM2 memory is native support for error correcting code (ECC) functionality. ECC 
provides higher reliability for compute applications that are sensitive to data corruption. It is especially 
important in large-scale cluster computing environments where GPUs process very large datasets and/or 
run applications for extended periods. 

ECC technology detects and corrects single-bit soft errors before they affect the system. In comparison, 
GDDR5 does not provide internal ECC protection of the contents of memory and is limited to error 
detection of the GDDR5 bus only. Errors in the memory controller or the DRAM itself are not detected.  

GK110 Kepler GPUs offered ECC protection for GDDR5 by allocating some of the available memory for 
explicit ECC storage. 6.25% of the overall GDDR5 is reserved for ECC bits. In the case of a 12 GB Tesla K40 
(for example), 750 MB of its total memory was reserved for ECC operation, resulting in 11.25 GB (out of 
12 GB) of available memory with ECC turned on for Tesla K40. Also, accessing ECC bits caused a decrease 
in memory bandwidth of 12-15% on typical workloads, compared to the non-ECC case. Since HBM2 
supports ECC natively, Tesla P100 does not suffer from the capacity overhead, and ECC can be active at all 
times without a bandwidth penalty. Like the GK110 GPU, the GP100 GPU’s register files, shared 
memories, L1 cache, L2 cache, and the Tesla P100 accelerator’s HBM2 DRAM are protected by a Single‐
Error Correct Double‐Error Detect (SECDED) ECC code.  

Tesla P100 Design  

One of the most exciting new features of the Tesla P100 system architecture is its new board design that 
houses the GP100 GPU and HBM2 memory stacks, and also provides NVLink and PCIe connectivity. One 
or more P100 accelerators can be used in workstations, servers, and large-scale computing systems. The 
P100 accelerator is 140mm x 78mm and includes high-efficiency voltage regulators that supply the 
various required voltages to the GPU. The P100 is rated to 300W. 

Figure 11 shows the front of the Tesla P100 Accelerator and Figure 12 shows the back. 
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Figure 11. Tesla P100 Accelerator (Front) 

 

Figure 12. Tesla P100 Accelerator (Back) 
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NVLink High Speed Interconnect 

NVLink is NVIDIA’s new high-speed interconnect technology for GPU-accelerated computing. NVLink is 
currently implemented in Tesla P100 accelerator boards and Pascal GP100 GPUs, and it significantly 
increases performance for both GPU-to-GPU communications and for GPU access to system memory.  

Multiple GPUs are commonly used in the nodes of high-performance computing clusters. Up to eight 
GPUs per node is typical today, and in multiprocessing systems, a powerful interconnect is extremely 
valuable. Our vision with NVLink was to create an interconnect for GPUs that would offer much higher 
bandwidth than PCI Express Gen 3 (PCIe), and be compatible with the GPU ISA to support shared memory 
multiprocessing workloads.  
 

  

Figure 13. NVIDIA DGX-1 with Eight NVIDIA Tesla P100 GPUs 

With NVLink-connected GPUs, programs can execute directly on memory that is attached to another GPU 
as well as on local memory, and the memory operations remain correct (for example providing full 
support for Pascal’s atomic operations).  

NVLink uses NVIDIA’s new High-Speed Signaling interconnect (NVHS). NVHS transmits data over a 
differential pair running at up to 20 Gb/sec. Eight of these differential connections form a Sub-Link that 
sends data in one direction, and two sub-links—one for each direction—form a Link that connects two 
processors (GPU-to-GPU or GPU-to-CPU). A single Link supports up to 40 GB/sec of bidirectional 
bandwidth between the endpoints. Multiple Links can be combined to form Gangs for even higher-
bandwidth connectivity between processors. The NVLink implementation in Tesla P100 supports up to 
four Links, enabling ganged configurations with aggregate maximum bidirectional bandwidth of 160 
GB/sec, as shown in Figure 14 and Figure 15.  
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NVLink Configurations 

Numerous topologies are possible, and different configurations can be optimized for different 
applications. In this section, we discuss the following NVLink configurations: 

 GPU-to-GPU NVLink Connectivity 

 CPU-to-GPU NVLink Connectivity 

GPU-to-GPU NVLink Connectivity 

Figure 14 shows an 8-GPU Hybrid Cube Mesh that includes two fully NVLink-connected quads of GPUs, 
with NVLink connections between the quads, and GPUs within each quad connected to their respective 
CPUs directly through PCIe. By using separate NVLink connections to span the gap between the two 
quads, it relieves pressure on the PCIe uplink to each CPU, and likewise avoids routing transfers through 
system memory and over an inter-CPU link.  
 

 

Figure 14. Eight GPU Hybrid Cube Mesh Architecture 

Note that each half of the 8-GPU Hybrid Cube Mesh can operate as a shared memory multiprocessor, 
while the remote nodes can also share memory with DMA through peers. With all GPU-to-GPU traffic 
flowing over NVLINK, PCIe is now entirely available for either connection to a NIC (not shown) or for 
accessing system memory traffic. This configuration will be commonly recommended for general-purpose 
Deep Learning applications and is implemented in NVIDIA’s new DGX-1 server. 
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Figure 15 shows a four-GPU cluster with each of the GPUs connected to each of its peers with a single 
NVLink. In this case, peers can communicate at 40 GB/sec bidirectionally (80GB/sec bidirectional 
bandwidth for the double links), enabling robust data sharing between the GPUs.  

 

Figure 15. NVLink Connecting Four GPUs with the CPU Connected Using PCIe 

CPU-to-GPU NVLink Connectivity 

While NVLink primarily focuses on connecting multiple NVIDIA Tesla P100 accelerators together, it is also 
possible to use as a CPU-to-GPU interconnect. For example, Tesla P100 accelerators can connect to IBM’s 
POWER8 with NVIDIA NVLink technology. POWER8 with NVLink™ supports four NVLinks. 

Figure 16 shows a single GPU connected to an NVLink-enabled CPU. In this case, the GPU can access 
system memory at up to 160 GB/sec bidirectional bandwidth —5x higher bandwidth than available over 
PCIe.  
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Figure 16. NVLink GPU-to-CPU Interconnect 

Figure 17 shows a system with two NVLinks from the CPU to each GPU. The remaining two links on each 
GPU are used for peer-to-peer communication. 

 

Figure 17. Two GPUs and a CPU Connected with 80 GB/sec Bidirectional Bandwidth 
NVLink Interfaces 
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NVLink Interface to the Tesla P100 

As described in the Tesla P100 Design section, NVLink interconnections are included on the P100 
accelerator. The P100 includes two 400-pin high speed connectors. One of these connectors is used for 
the NVLink signals on/off the module; the other is used to supply power, control signals and PCIe I/O.  

The Tesla P100 accelerator can be installed into a larger GPU carrier or system board. The GPU carrier 
makes the appropriate connections to other P100 accelerators or PCIE controllers. Because of the smaller 
size of the P100 accelerator compared to traditional GPU boards, customers can easily build servers that 
are packed with more GPUs than ever before. With the added bandwidth provided by NVLink, GPU-to-
GPU communications will not be bottlenecked by the limitations of PCIe bandwidth, enabling previously 
unavailable opportunities for GPU clustering.  

At the level of the GPU architectural interface, the NVLink controller communicates with the GPU 
internals through another new block called the High-Speed Hub (HSHUB). The HSHUB has direct access to 
the GPU-wide crossbar and other system elements, such as the High-Speed Copy Engines (HSCE). which 
can be used to move data into and out of the GPU at peak NVLink rates. Figure 18 shows how NVLink 
relates to HSHUB and some of the higher level blocks in a GP100 GPU. 

 

Figure 18.  NVLink relationship to other major blocks in GP100 

For more details, see Appendix A: NVLink Signaling and Protocol Technology. 
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Unified Memory 

Unified Memory is an important feature of the CUDA programming model that greatly simplifies 
programming and porting of applications to GPUs by providing a single, unified virtual address space for 
accessing all CPU and GPU memory in the system. New Pascal GP100 features provide a significant 
advancement for GPU computing by expanding the capabilities and improving the performance of Unified 
Memory. 

The key to high performance on modern processors is to ensure that the hardware computational units 
have fast, direct access to data. Over the years, NVIDIA has continuously improved and simplified GPU 
memory accesses and data sharing so that GPU programmers can focus more on building parallel 
applications and less on managing memory allocations and data transfers between GPU and CPU. 

For many years, in a typical PC or cluster node, the memories of the CPU and each GPU have been 
physically distinct and separated by an interconnect bus, typically PCIe. In early versions of CUDA, GPU 
programmers had to explicitly manage CPU and GPU memory allocations and data transfers. This was 
challenging because any data shared between the CPU and GPU required two allocations, one in system 
memory and one in GPU memory. The programmer had to use explicit memory copy calls to move the 
most up-to-date data between them. Keeping the data in the right place at the right time added 
complexity to applications and increased the learning curve for new GPU programmers. 

Explicit data transfers can also cost performance in the case of sparse memory access—for example, 
copying a whole array back to the GPU after only a few random bytes are written by the CPU adds 
transfer latency overhead. Managing memory transfers, improving memory locality, and using techniques 
such as asynchronous memory copies can improve performance, but these all require more care in 
programming. 

Unified Memory History 
The NVIDIA Fermi GPU architecture, introduced in 2009, implemented a unified GPU address space 
spanning the three main GPU memory spaces (thread private local memory, thread block shared 
memory, and global memory). This unified address space only applied to GPU memory addressing, and 
mainly resulted in simpler compilation by enabling a single load/store instruction and pointer address to 
access any of the GPU memory spaces (global, local, or shared memory), rather than different 
instructions and pointers for each. This also enabled full C and C++ pointer support, which was a 
significant advancement at the time. 

In 2011, CUDA 4 introduced Unified Virtual Addressing (UVA) to provide a single virtual memory address 
space for both CPU and GPU memory and enable pointers to be accessed from GPU code no matter 
where in the system they reside, whether in GPU memory (on the same or a different GPU), CPU 
memory, or on-chip shared memory. UVA enables Zero-Copy memory, which is pinned CPU memory 
accessible by GPU code directly, over PCIe, without a memcpy. Zero-Copy provides some of the 
convenience of Unified Memory, but none of the performance, because it is always accessed by the GPU 
with PCIe’s low bandwidth and high latency. 
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CUDA 6 introduced Unified Memory, which creates a pool of managed memory that is shared between 
the CPU and GPU, bridging the CPU-GPU divide. Managed memory is accessible to both the CPU and GPU 
using a single pointer. The CUDA system software automatically migrates data allocated in Unified 
Memory between GPU and CPU, so that it looks like CPU memory to code running on the CPU, and like 
GPU memory to code running on the GPU. But CUDA 6 Unified Memory was limited by the features of the 
Kepler and Maxwell GPU architectures: All managed memory touched by the CPU had to be synchronized 
with the GPU before any kernel launch. The CPU and GPU could not simultaneously access a managed 
memory allocation and the Unified Memory address space was limited to the size of the GPU physical 
memory.  

 

Figure 19. CUDA 6 Unified Memory 

Figure 20 shows an example of how Unified Memory in CUDA 6 simplifies porting of code to the GPU by 
providing a single pointer to data, making explicit CPU-GPU memory copies an optimization rather than a 
requirement. 

 

Figure 20. CUDA 6 Unified Memory Simplifies Porting Code to the GPU 
(This is done by providing a new managed memory allocator that returns a pointer to data 
that can be accessed from either CPU or GPU code.) 
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Pascal GP100 Unified Memory 

Expanding on the benefits of CUDA 6 Unified Memory, Pascal GP100 adds features to further simplify 
programming and sharing of memory between CPU and GPU, and allowing easier porting of CPU parallel 
compute applications to use GPUs for tremendous speedups. Two main hardware features enable these 
improvements: support for large address spaces and page faulting capability. 

GP100 extends GPU addressing capabilities to enable 49-bit virtual addressing. This is large enough to 
cover the 48-bit virtual address spaces of modern CPUs, as well as the GPU's own memory. This allows 
GP100 Unified Memory programs to access the full address spaces of all CPUs and GPUs in the system as 
a single virtual address space, unlimited by the physical memory size of any one processor (see Figure 21). 

Memory page faulting support in GP100 is a crucial new feature that provides more seamless Unified 
Memory functionality. Combined with the system-wide virtual address space, page faulting provides 
several benefits. First, page faulting means that the CUDA system software does not need to synchronize 
all managed memory allocations to the GPU before each kernel launch. If a kernel running on the GPU 
accesses a page that is not resident in its memory, it faults, allowing the page to be automatically 
migrated to the GPU memory on-demand. Alternatively, the page may be mapped into the GPU address 
space for access over the PCIe or NVLink interconnects (mapping on access can sometimes be faster than 
migration). Note that Unified Memory is system-wide: GPUs (and CPUs) can fault and migrate memory 
pages either from CPU memory or from the memory of other GPUs in the system. 

 

Figure 21. Pascal GP100 Unified Memory is not Limited by the  
Physical Size of GPU Memory. 

With the new page fault mechanism, global data coherency is guaranteed with Unified Memory. This 
means that with GP100, the CPUs and GPUs can access Unified Memory allocations without any 
programmer synchronization. This was illegal on Kepler and Maxwell GPUs because coherency could not 
be guaranteed if the CPU accessed a Unified Memory allocation while a GPU kernel was active.  
 

 Note:  As with any parallel application, developers need to ensure correct synchronization to avoid data 

hazards between processors. 
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Finally, on supporting operating system platforms, memory allocated with the default OS allocator (for 
example, malloc or new) can be accessed from both GPU code and CPU code using the same pointer (see 
Figure 22). On these systems, Unified Memory can be the default: there is no need to use a special 
allocator or for the creation of a special managed memory pool. Moreover, GP100's large virtual address 
space and page faulting capability enable applications to access the entire system virtual memory. This 
means that applications are permitted to oversubscribe the memory system: in other words they can 
allocate, access, and share arrays larger than the total physical capacity of the system, enabling out-of-
core processing of very large datasets.  

Certain operating system modifications are required to enable Unified Memory with the system allocator. 
NVIDIA is collaborating with Red Hat and working within the Linux community to enable this powerful 
functionality. 

 

Figure 22. With Operating System Support, Pascal is Capable of Supporting Unified 
Memory with the Default System Allocator.  
(Here, malloc is all that is needed to allocate memory accessible from any CPU or GPU in the 
system.) 

Benefits of Unified Memory 

There are two main ways that programmers benefit from Unified Memory. 

 Simpler programming and memory model. Unified Memory lowers the bar of entry to parallel 
programming on GPUs by making explicit device memory management an optimization, rather than a 
requirement. Unified Memory lets programmers focus on developing parallel code without getting 
bogged down in the details of allocating and copying device memory. This makes it easier to learn to 
program GPUs and simpler to port existing code to the GPU.  

 But it is not just for beginners; Unified Memory also makes complex data structures and C++ classes 
much easier to use on the GPU. On systems that support Unified Memory with the default system 
allocator, any hierarchical or nested data structure can automatically be accessed from any processor 
in the system. With GP100, applications can operate out-of-core on data sets that are larger than the 
total memory size of the system. 
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 Performance through data locality. By migrating data on demand between the CPU and GPU, Unified 
Memory can offer the performance of local data on the GPU, while providing the ease of use of 
globally shared data. The complexity of this functionality is kept under the covers of the CUDA driver 
and runtime, ensuring that application code is simpler to write. The point of migration is to achieve full 
bandwidth from each processor; the high HBM2 memory bandwidth is vital to feeding the compute 
throughput of a GP100 GPU. With page faulting on GP100, locality can be ensured even for programs 
with sparse data access, where the pages accessed by the CPU or GPU cannot be known ahead of 
time, and where the CPU and GPU access parts of the same array allocations simultaneously.  

An important point is that CUDA programmers still have the tools they need to explicitly optimize data 
management and CPU-GPU concurrency where necessary: CUDA 8 will introduce useful APIs for providing 
the runtime with memory usage hints and for explicit prefetching. These tools allow the same capabilities 
as explicit memory copy and pinning APIs, without reverting to the limitations of explicit GPU memory 
allocation. 
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Compute Preemption 

The new Pascal GP100 Compute Preemption feature allows compute tasks running on the GPU to be 
interrupted at instruction-level granularity, and their context swapped to GPU DRAM. This permits other 
applications to be swapped in and run, followed by the original task’s context being swapped back in to 
continue execution where it left off.  

Compute Preemption solves the important problem of long-running or ill-behaved applications that can 
monopolize a system, causing the system to become unresponsive while it waits for the task to complete, 
possibly resulting in the task timing out and/or being killed by the OS or CUDA driver. Before Pascal, on 
systems where compute and display tasks were run on the same GPU, long-running compute kernels 
could cause the OS and other visual applications to become unresponsive and non-interactive until the 
kernel timed out. Because of this, programmers had to either install a dedicated compute-only GPU or 
carefully code their applications around the limitations of prior GPUs, breaking up their workloads into 
smaller execution timeslices so they would not time out or be killed by the OS.  

Indeed, many applications do require long-running processes, and with Compute Preemption in GP100, 
those applications can now run as long as they need when processing large datasets or waiting for 
specific conditions to occur, while visual applications remain smooth and interactive—but not at the 
expense of the programmer struggling to get code to run in small timeslices.  

Compute Preemption also permits interactive debugging of compute kernels on single-GPU systems. This 
is an important capability for developer productivity. In contrast, the Kepler GPU architecture only 
provided coarser-grained preemption at the level of a block of threads in a compute kernel. This block-
level preemption required that all threads of a thread block complete before the hardware can context 
switch to a different context. However when using a debugger and a GPU breakpoint was hit on an 
instruction within the thread block, the thread block was not complete, preventing block-level 
preemption. While Kepler and Maxwell were still able to provide the core functionality of a debugger by 
adding instrumentation during the compilation process, GP100 is able to support a more robust and 
lightweight debugger implementation. 
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NVIDIA DGX-1 Deep Learning Supercomputer 

Data scientists and artificial intelligence researchers require accuracy, simplicity, and speed from their 
Deep Learning systems. Faster training and iteration ultimately means faster innovation and faster time 
to market. The NVIDIA DGX-1 is the world’s first purpose-built server for Deep Learning, with fully 
integrated hardware and software that can be deployed quickly and easily. Its’ revolutionary performance 
of up to 170 FP16 TFLOPS significantly accelerates training time, making the NVIDIA DGX-1 the first AI 
supercomputer in a box.  

The NVIDIA DGX-1 server is the first server using Tesla P100 accelerators interconnected with NVLink. 
Available in an eight (8) Tesla P100 accelerator configuration, the DGX-1 system is built with high 
performance/high reliability components in a 3U rack-mountable chassis for standalone use or cluster 
integration.  

The 8-GPU configuration features two NVLink fully-connected P100 GPU quads that are tied together by 
four additional NVLinks in a Hybrid Cube Mesh topology as seen in Figure 14. Every GPU in a quad is also 
directly connected via PCIe to a PCIe switch that connects to a CPU.  

Combining powerful hardware with software tailored to Deep Learning, the NVIDIA DGX-1 (see Figure 23) 
enables developers and researchers with a turnkey solution for high-performance GPU-accelerated Deep 
Learning application development, testing, and network training.  
 

 

Figure 23. NVIDIA DGX-1 Server 

250 Servers in a Box 

Table 3 shows Alexnet training time on a Dual Xeon system compared to the DGX-1 server. As you can 
see, the raw processing power of DGX-1 far surpasses the Dual Xeon in both raw TFLOPS and aggregate 
node bandwidth. Dual Xeon would require over 250 nodes to train Alexnet in a two hour turn-around-
time (TAT) compared to only a single DGX-1 node! 
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Table 3 - Alexnet Training Time: Pascal GP100 vs Xeon  

 Dual XEON DGX-1 

FLOPS (CPU + GPU) 
3TF 170 TF 

Aggregated Node BW 
76 GB/s 768 GB/s 

Alexnet Train Time 
150 Hours 2 Hours 

Number of Nodes for Two Hour TAT 
> 250* 1 

*Caffe Training on Multi-node Distributed-memory Systems Based on Intel® Xeon® Processor E5 Family 
https://software.intel.com/en-us/articles/caffe-training-on-multi-node-distributed-memory-systems-
based-on-intel-xeon-processor-e5 

12X DNN Speedup in One Year 

Figure 24 compares Pascal DGX-1 and Maxwell DNN speedup over one year on Alexnet. 

 

Figure 24. Pascal DGX-1 vs Maxwell DNN Speedup Over One Year  
Since NVIDIA’s Last GTC Event 

DGX-1 Software Features 

The DGX-1 Base OS software empowers users to get started with Deep Learning quickly with minimal 
effort. Based on an industry standard Linux distribution tuned for GPUs, the DGX-1 software stack 
includes CUDA 8.0 and the latest release of NVIDIA’s Deep Learning SDK, so Deep Learning applications 
can tap into the high performance features of the Tesla P100 to accelerate all the major Deep Learning 
frameworks and the applications that use them.  
 

https://software.intel.com/en-us/articles/caffe-training-on-multi-node-distributed-memory-systems-based-on-intel-xeon-processor-e5
https://software.intel.com/en-us/articles/caffe-training-on-multi-node-distributed-memory-systems-based-on-intel-xeon-processor-e5
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NVIDIA DGX-1 System Specifications 

The NVIDIA DGX-1 is the world’s first purpose-built server for Deep Learning with fully integrated 
hardware and software that can be deployed quickly and easily. Its revolutionary performance 
significantly accelerates training time, making the NVIDIA DGX-1 the first AI supercomputer in a box. 
Table 4 lists the NVIDIA DGX-1 system specifications. 

Table 4. NVIDIA DGX-1 System Specifications  

Specification Value 

GPUs 8x Tesla P100 GPUs 

TFLOPS 170 (GPU FP16) + 3 (CPU FP32) 

GPU Memory 16 GB per GPU / 128 GB per DGX-1 Node 

CPU 
Dual 20-core Intel® Xeon® E5-2698 v4 2.2 GHz 

NVIDIA CUDA Cores 28,672 

System Memory 512 GB 2133 MHz DDR4 LRDIMM 

Storage 4x 1.92TB SSD RAID 0 

Network Dual 10 GbE, 4 IB EDR 

System Weight 134 lbs 

System Dimensions 866 D x 444 W x 131 H (mm) 

Packing Dimensions 1180 D x 730 W x 284 H (mm) 

Power  3200W (Max). Four 1600W load-balancing power 
supplies (3+1 redundant), 200-240V (ac), 10A 

Operating Temperature Range 10 - 35°C 
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Conclusion 

NVIDIA’s new NVIDIA Tesla P100 GPU accelerator build with Pascal architecture brings together 
breakthroughs that will enable customers to compute problems previously impossible to solve. From top 
to bottom, NVIDIA Tesla P100 has amazing innovations – compute performance, memory bandwidth, 
capacity, connectivity, and power efficiency – required to be the computational engine for next-
generation HPC and AI systems. 
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Appendix A: NVLink Signaling and Protocol 
Technology  

NVLink uses NVIDIA’s High Speed Signaling technology (NVHS). Data is sent differentially at 20 Gbit/sec 
per signal pair. Eight differential pairs in each direction are combined to form a single link. This is the basic 
building block. A single link has a raw bidirectional bandwidth of 40 GB/sec. Signaling is NRZ (Non-Return-
to-Zero). The link is DC-coupled and has a differential impedance of 85 Ohms. Links can tolerate polarity 
inversion and lane reversal to support effective PCB routing. On die, data is sent from the PHY (physical 
level circuit) to the NVLink controller using a 128-bit Flit (Flow control digit) at 1.25GHz data rate. NVHS 
uses an embedded clock. At the receiver, the recovered clock is used to capture the incoming data. 

NVLink Controller Layers 

The NVLink controller consists of three layers—the Physical Layer (PL), Data Link Layer (DL), and 
Transaction Layer (TL). The protocol uses a variable length packet with packet sizes ranging from 1 (simple 
read request command for example) to 18 (write request with data for 256B data transfer with address 
extension) flits. Figure 25 shows the NVLink Layers and Links; Physical Layer (PHY), Data Link Layer (DL), 
Transaction Layer (TL). 

Physical Layer (PL) 

The PL interfaces with the PHY. The PL is responsible for deskew (across all eight lanes), framing (figuring 
out the start of each packet), scrambling/descrambling (to ensure adequate bit transition density to 
support clock recovery), polarity inversion, lane reversal and for delivering the received data to the Data 
Link Layer. Figure 25 shows the NVLink Layers and Links; Physical Layer (PHY), Data Link Layer (DL), 
Transaction Layer (TL). 
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Figure 25. NVLink Layers and Links; Physical Layer (PHY), Data Link Layer (DL), 
Transaction Layer (TL) 

Data Link Layer (DL) 

The Data Link Layer is primarily responsible for reliable transmission of packets across the link. Packets to 
be transmitted are protected using a 25-bit CRC (Cyclic Redundancy Check). The transmitted packets are 
stored in a replay buffer until they have been positively acknowledged (ACK) by the receiver at the other 
end of the link. If the DL detects a CRC error on an incoming packet, it does not send an ACK, and 
prepares for reception of the retransmitted data. The transmitter meanwhile, in the absence of an ACK, 
times-out and initiates data retransmission from the replay buffer. A packet is retired from the replay 
buffer only when it has been acknowledged. The 25-bit CRC allows detection of up to 5 random bit errors 
or up to 25-bit bursts of errors on any lane. The CRC is calculated over the current header and the 
previous payload (if any).  

The DL is also responsible for link bring-up and maintenance. The DL sends data on to the Transaction 
Layer (TL). 

Transaction Layer 

The Transaction Layer handles synchronization, link flow control, virtual channels, and can aggregate 
multiple links together to provide very high communication bandwidth between processors.  
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Appendix B: Accelerating Deep Learning and 
Artificial Intelligence with GPUs 

The holy grail of computing is artificial intelligence: building a machine so intelligent, it can learn on its 
own without explicit instruction. Deep learning is a critical ingredient to achieving modern AI.  

Deep learning allows the AI brain to perceive the world around it; the machine learns and ultimately 
makes decisions by itself. It takes massive amounts of data to train the machine to do this. In addition, 
highly sophisticated deep neural networks are needed to process it all. In 2012, Google’s Deep Learning 
project, Google Brain, learned to recognize cats by watching movies on YouTube. But it required 2,000 
CPUs (16,000 CPU cores) in servers powered and cooled in one of Google’s data centers to do this. Few 
organizations have machines of this scale. Around the same time, NVIDIA Research teamed with Stanford 
University to use GPUs for Deep Learning. As it turned out, 12 NVIDIA GPUs could deliver the deep-
learning performance of 2,000 CPUs. 

Many say the beginning of the Deep Learning revolution was the 2012 ImageNet competition entry by 
Krizhevsky, Sutskever, and Hinton using a convolutional neural network now referred to as “AlexNet”, 
which used the parallel processing performance of GPUs and outperformed the entire conventional 
computer vision competition by a large margin. This was a milestone event in the history of artificial 
intelligence and Deep Learning. Krizhevsky and his team wrote no computer vision code. Rather, using 
Deep Learning, their computer learned to recognize images by itself. They designed a neural network 
(AlexNet) and trained it with a million example images that required trillions of math operations on 
NVIDIA GPUs. Krizhevksy’s AlexNet had beaten the best human-coded software.  

Since then, one by one, deep neural networks (DNN) running on GPUs have conquered various 
algorithm domains related to computer vision in particular, and machine perception in general. The 
potential use cases are endless: From self-driving cars to faster drug development, from automatic 
image captioning in online image databases to smart real-time language translation in video chat 
applications, Deep Learning is providing exciting opportunities wherever machines interact with the 
human world. These days, working with deep neural networks goes hand in hand with the use of GPUs. 
Deep learning users everywhere achieve dramatically reduced training times by transitioning from CPUs 
to one or more massively parallel GPU accelerators.  

Deep Learning in a Nutshell 

Deep Learning is a technique that models the neural learning process of the human brain, continually 
learning, continually getting smarter, and delivering more accurate results more quickly over time. A child 
is initially taught by an adult to correctly identify and classify various shapes, eventually being able to 
identify shapes without any coaching. Similarly, a Deep Learning or neural learning system has to be 
trained in object recognition and classification for it get smarter and more efficient at identifying basic 
objects, occluded objects, etc., while also assigning context to objects. 

http://image-net.org/challenges/LSVRC/
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
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At the simplest level, neurons in the human brain look at various inputs fed into them, importance levels 
are assigned to each of these inputs, and output is passed on to other neurons to act upon.  

The Perceptron as shown in Figure 26 is the most basic model of a neural network and is akin to a neuron 
in the human brain. As seen in the image, the Perceptron has several inputs that represent various 
features of an object that the Perceptron is being trained to recognize and classify, and each of these 
features is assigned a certain weight based on the importance of that feature in defining the shape of an 
object.  
 

 

Figure 26. The Perceptron is the Simplest Model of a Neural Network 

For example, consider a Perceptron that is being trained to identify the number zero that is handwritten. 
Obviously, the number zero can be written in many different ways based on different handwriting styles. 
The Perceptron will take the image of the number zero, decompose it into various sections and assign 
these sections to features x1 through x4. The upper right hand curve in the number zero may be assigned 
to x1, the lower bottom curve to x2, and so on. The weight associated with a particular feature 
determines how important that feature is in correctly determining whether the handwritten number is a 
zero. The green blob at the center of the diagram is where the Perceptron is calculating the weighted 
sum of all the features in the image to determine whether the number is a zero. A function is then 
applied on this result to output a true or false value on whether the number is a zero.  
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The key aspect of a neural network is in training the network to make better predictions. The Perceptron 
model (shown in Figure 26) to detect handwritten zeros is trained by initially assigning a set of weights to 
each of the features that define the number zero. The Perceptron is then provided with the number zero 
to check whether it correctly identifies the number. This flow of data through the network until it reaches 
a conclusion on whether the number is zero or not, is the forward propagation phase. If the neural 
network does not correctly identify the number, then the reason for the incorrect identification needs to 
be understood, along with the magnitude of the error, and the weights need to be adjusted for each 
feature until the perceptron correctly identifies a zero. The weights have to be further adjusted until it 
correctly identifies zeros written in various handwriting styles. This process of feeding back the errors and 
adjusting the weights of each feature that defines the number zero is called backward propagation. The 
equations shown in the diagram look complex, but are basically mathematical representations of the 
described training process.  

Though the Perceptron is a very simple model of a neural network, advanced multi-layered neural 
networks based on similar concepts are widely used today. Once a network has been trained to correctly 
identify and classify the objects, it is deployed in the field, where it will repeatedly run inference 
computations. Examples of inference (the process through which a DNN extracts useful information from 
a given input) include identifying handwritten numbers on checks deposited into ATM machines, 
identifying images of friends in Facebook photos, delivering movie recommendations to over fifty million 
Netflix users, identifying and classifying different types of automobiles, pedestrians, and road hazards in 
driverless cars, or translating human speech in real-time. 

A multi-layered neural network model as shown in Figure 27 may consist of multiple interconnected 
complex Perceptron-like nodes, with each node looking at a number of input features, and feeding its 
output to the next several layers of interconnected nodes.  

 
Image source: Unspurvised Learning Hierarchical Representations with Convolutional Deep Brief Networks, ICML 2009 & Comm. ACM 2011,  
Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Ng. 

Figure 27. Complex Multi-layer Neural Network Models Require Increased Amounts of 
Compute Power 
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In the model shown in Figure 27, the first layer of the neural model breaks down the image into various 
sections and looks for basic patterns such as lines and angles, the second layer assembles these lines to 
look for higher level patterns such as wheels, windshields, and mirrors, the next layer identifies the type 
of vehicle, and the final few layers of the neural model identify the model of a specific brand (which in 
this case is an Audi A7). 

An alternative to a fully connected layer of a neural network is a convolutional layer. A neuron in a 
convolutional layer is connected to neurons only in a small region in the layer below it. Typically this 
region might be a 5×5 grid of neurons (or perhaps 7×7 or 11×11). The size of this grid is called the filter 
size. Thus a convolutional layer can be thought of as performing a convolution on its input. This type of 
connection pattern mimics the pattern seen in perceptual areas of the brain, such as retinal ganglion cells 
or cells in the primary visual cortex. 

In a DNN convolutional layer, the filter weights are the same for each neuron in that layer. Typically, a 
convolutional layer is implemented as many “sub layers” each with a different filter. Hundreds of 
different filters may be used in one convolutional layer. One can think of a DNN convolutional layer as 
performing hundreds of different convolutions on its input at the same time, with the results of these 
convolutions available to the next layer up. DNNs that incorporate convolutional layers are called 
Convolutional Neural Networks (CNNs). 

NVIDIA GPUs:  The Engine of Deep Learning 

State-of-the-art DNNs and CNNs can have from millions to well over one billion parameters to adjust via 
back-propagation. Furthermore, DNNs require a large amount of training data to achieve high accuracy, 
meaning hundreds of thousands to millions of input samples will have to be run through both a forward 
and backward pass.  

It is now widely recognized within academia and industry that GPUs are the state of the art in training 
deep neural networks, due to both speed and energy efficiency advantages compared to more traditional 
CPU-based platforms. Because neural networks are created from large numbers of identical neurons, 
they are highly parallel by nature. This parallelism maps naturally to GPUs, which provide a significant 
speed-up over CPU-only training.  

Neural networks rely heavily on matrix math operations and complex multi-layered networks require 
tremendous amounts of floating point performance and bandwidth for both efficiency and speed. GPUs 
with their thousands of processing cores, optimized for matrix math operations, and delivering tens to 
hundreds of TFLOPS of performance, are the obvious computing platform for deep neural network-based 
artificial intelligence and machine learning applications. 

NVIDIA is at the forefront of this exciting GPU driven revolution in DNNs and Artificial Intelligence (AI). 
NVIDIA GPUs are accelerating DNNs in various applications by a factor of 10x to 20x, reducing training 
times from weeks to days. By collaborating with experts in this field, we continue to improve our GPU 
designs, system architecture, compilers and algorithms. In the past three years, NVIDIA GPU-based 
computing platforms have helped speed up Deep Learning network training times by a factor of fifty.   



GP100 Pascal Whitepaper 
Appendix B: Accelerating Deep Learning and 

Artificial Intelligence with GPUs 

 

NVIDIA Tesla P100 WP-08019-001_v01.1  |  41 

Tesla P100:  The Fastest Accelerator for Training Deep Neural 
Networks 

NVIDIA’s latest and most advanced Pascal GPU architecture delivers an order of magnitude higher 
performance for training deep neural network and significantly reducing training times. Tesla P100 with 
its 3584 processing cores delivers  over 21 TFLOPS of FP16 processing power for Deep Learning 
applications. Interconnecting eight Tesla P100 accelerators through the high-speed NVLink interconnect 
significantly increases the available performance to 170 TFLOPS/sec for training highly complex multi-
layered DNNs 

In addition to key architectural advances such as HBM2 memory, Unified Memory, high-speed NVLink 
interconnect, larger caches, and lower latency, Tesla P100 also includes features that increase 
performance for Deep Learning. First introduced in the Maxwell GPU architecture, the Pascal GP100 GPU 
also includes support for 16-bit storage and arithmetic. Support for 16-bit floating-point (FP16) storage 
and arithmetic has further improved the performance of neural network algorithms and reduced 
inference times.  

Comprehensive Deep Learning Software  
Development Kit 

AI innovation is on a breakneck pace. Ease of programming and developer productivity is paramount. The 
programmability and richness of NVIDIA’s CUDA platform allow researchers to innovate quickly. NVIDIA 
provides high-performance tools and libraries such as NVDIA DIGITS™, cuDNN, cuBLAS and others to 
power innovative GPU-accelerated machine learning applications in the cloud, data centers, workstations, 
and embedded platforms with the Deep Learning Software Development Kit (SDK). Developers want to 
create anywhere and deploy everywhere. NVIDIA GPUs are available all over the world, from every PC 
OEM; in desktops, notebooks, servers, or supercomputers; and in the cloud from major companies like 
Amazon, Google, IBM, Facebook, Baidu and Microsoft. All major AI development frameworks are NVIDIA 
GPU accelerated—from Internet companies, to research, to startups. No matter the AI development 
system preferred, it will be faster with GPU acceleration. We have also created GPUs for just about every 
computing form-factor so that DNNs can power intelligent machines of all kinds. GeForce is for PC. Tesla 
is for cloud and supercomputers. Jetson is for robots and drones. And DRIVE PX is for cars. All share the 
same architecture and accelerate Deep Learning (see  
Figure 28).  



GP100 Pascal Whitepaper 
Appendix B: Accelerating Deep Learning and 

Artificial Intelligence with GPUs 

 

NVIDIA Tesla P100 WP-08019-001_v01.1  |  42 

 

Figure 28. Accelerated Frameworks 

Big Data Problem Solving with NVIDIA GPUs and DNNs 

Baidu, Google, Facebook, Microsoft were among the earliest adopters of NVIDIA GPUs for Deep Learning 
and AI processing. In fact, AI technology enables these companies to respond to your spoken word, 
translate speech or text to another language, recognize and automatically tag images, and recommend 
newsfeeds, entertainment, and products that are tailored to each user. Startups and established 
companies are now racing to use AI to create new products and services, or improve their operations. In 
just two years, the number of companies NVIDIA collaborates with on Deep Learning has jumped nearly 
35x to over 3,400 companies (see Figure 29). Industries such as healthcare, life sciences, energy, financial 
services, automotive, manufacturing, and entertainment will benefit by inferring insight from mountains 
of data. And with Facebook, Google, and Microsoft opening their deep-learning platforms for all to use, 
AI-powered applications will spread fast. In light of this trend, Wired recently heralded the rise of the 
GPU. 

http://www.wired.com/2015/12/facebook-open-source-ai-big-sur/
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Figure 29. Organizations Engaged with NVIDIA on Deep Learning 

Self-driving Cars 

Whether to augment humans with a superhuman co-pilot, or revolutionize personal mobility services, or 
reduce the need for sprawling parking lots within cities, self-driving cars have the potential to do amazing 
social good. Driving is complicated. Unexpected things happen. Freezing rain turns the road into a skating 
rink. The road to your destination is closed. A child runs out in front of the car. You can’t write software 
that anticipates every possible scenario a self-driving car might encounter. That’s the value of Deep 
Learning; it can learn, adapt, and improve. We are building an end-to-end Deep Learning platform for 
self-driving cars with NVIDIA DRIVE PX , NVIDIA DriveWorks, and NVIDIA DriveNet (see Figure 30)— from 
the training system to the in-car AI computer. The results are very exciting. A future with superhuman 
computer co-pilots and driverless shuttles is no longer science fiction. 
 

 
Daimer was able to bring the vehicle’s environment perception a 
significant step closer to human performance and exceed the 
performance of classic computer vision with NVIDIA DriveNet. 

Using a dataset from our partner Audi, NVIDIA engineers rapidly trained 
NVIDIA DriverNet to detect vehicles in an extremely difficult 
environment—snow. 

Figure 30. NVIDIA DriveNet 

http://www.nvidia.com/object/drive-px.html
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Robots 

FANUC, a leading manufacturing robot maker, recently demonstrated an assembly-line robot that learned 
to pick randomly oriented objects out of a bin. The GPU-powered robot learned by trial and error. This 
deep-learning technology was developed by Preferred Networks, which was recently featured in a The 
Wall Street Journal article headlined, Japan Seeks Tech Revival with Artificial Intelligence. 

Healthcare and Life Sciences 

Deep Genomics is applying GPU-based Deep Learning to understand how genetic variations can lead to 
disease. Arterys uses GPU-powered Deep Learning to speed analysis of medical images. Its technology will 
be deployed in GE Healthcare MRI machines to help diagnose heart disease. Enlitic is using Deep Learning 
to analyze medical images to identify tumors, nearly invisible fractures, and other medical conditions. 

These are just a handful of examples of how GPUs and DNNs are revolutionizing Artificial Intelligence and 
machine learning in various fields. There are literally thousands more. 

Deep learning breakthroughs are accelerating AI capabilities at many levels, and GPU-accelerated Deep 
Learning and AI systems and algorithms are enabling exponential progress in the field.  
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