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Figure 1: Escher’s Box. Charted Metropolis light transport considers path sampling methods and their primary sample
space coordinates as charts of the path space, allowing to easily jump between them. In particular, it does so without requiring
classical invertibility of the sampling methods, making the algorithm practical even with complex materials.

Abstract

In this manuscript, inspired by a simpler reformulation of
primary sample space Metropolis light transport, we derive
a novel family of general Markov chain Monte Carlo algo-
rithms called charted Metropolis-Hastings, that introduces
the notion of sampling charts to extend a given sampling
domain and make it easier to sample the desired target dis-
tribution and escape from local maxima through coordinate
changes. We further apply the novel algorithms to light
transport simulation, obtaining a new type of algorithm
called charted Metropolis light transport, that can be seen
as a bridge between primary sample space and path space
Metropolis light transport. The new algorithms require to
provide only right inverses of the sampling functions, a prop-
erty that we believe crucial to make them practical in the
context of light transport simulation. We further propose a
method to integrate density estimation into this framework
through a novel scheme that uses it as an independence sam-
pler.
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1 Introduction

Light transport simulation can be notoriously hard. The
main problem is that forming an image requires evaluating
millions of infinite dimensional integrals, whose integrands,
while correlated, may contain an infinity of singularities and
different modes at disparate frequencies. Many approaches
have been proposed to solve the rendering equation, though
most of them rely on variants of Monte Carlo integration.
One of the most robust algorithms, Metropolis light trans-
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port (MLT), has been proposed by Veach and Guibas in
1997 [Veach and Guibas 1997] and has been later extended
in many different ways. One of the most commonly used
variants is primary sample space MLT [Kelemen et al. 2002],
partly because in some scenarios it is more efficient (though
not always), partly because it is generally considered simpler
to implement. However, both variants are still considered
relatively complex compared to other algorithms that are
not based on Markov chain Monte Carlo (MCMC) methods,
or that employ a simplified target distribution [Hachisuka
and Jensen 2011].

In this paper we show that the original primary sample space
MLT uses a suboptimal target distribution, and that fixing
the problem makes the algorithm more efficient while also
greatly simplifying it at the same time.

Inspired by this simpler formulation, we then propose a
novel family of general Markov chain Monte Carlo algo-
rithms called charted Metropolis-Hastings (CMH). The core
idea is to extend the concept of primary sample spaces into
that of sampling charts of the target space, extending the
domain of the desired target distribution and introducing
novel mutation types that swap charts and perform coor-
dinate changes (analogous to those found in regular tensor
calculus) in order to craft better proposals.

We then apply the new MCMC algorithm to light transport
simulation, obtaining a type of algorithms called charted
Metropolis light transport (CMLT), that considers all local
path sampling methods as parameterizations of the path
space manifold, and employs stochastic path inversion as a
way to perform coordinate transformations between charts.
Our algorithm is made practical by avoiding the require-
ment to use fully invertible path sampling methods, and
only requiring stochastic right inverses, a property we be-
lieve fundamental. This new type of algorithms can be seen
as fundamentally bridging the difference between the origi-
nal formulation of path space MLT and the primary sample
space version, allowing to easily combine both.

Finally, we propose a novel scheme to integrate density es-
timation inside MCMC frameworks that exploits its robust-
ness with respect to sampling near-singular and singular
paths while mantaining overall simplicity and efficiency of
implementation.

A preprint of this work has been published on ArXiv [Anony-
mous 2016].

2 Preliminaries

Veach [1997] showed that light transport simulation can be
expressed as the solution of per-pixel integrals of the form:

Ij =

∫
Ω

fj(x)dµ(x) (1)

where Ω =
⋃∞

k=1 Ωk represents the space of light paths of all
finite lengths k and µ is the area measure.

For a path x = x0 → x1 · · · → xk, the integrand is defined
by the measurement contribution function:

fj(x) = Le(x0 → x1)

·
k−1∏
i=0

[
fs(xi−1 → xi → xi+1)G(xi ↔ xi+1)

]
· W j

e (xk−1 → xk) (2)

where Le is the surface emission, W j
e is the pixel response

(or emitted importance), fs denotes the local BSDF and G is
the geometric term. To simplify notation, in the following we
will simply omit the pixel index and consider the positions
f = fj and I = Ij .

He further showed that if one employs a family Fk = {s, t :
s + t − 1 = k} of local path sampling techniques to sam-
ple subpaths y = y0 . . . ys−1 and z = z0 . . . zt−1 from the
light and the eye respectively, and build the joined path
x = y0 . . . ys−1zt−1 . . . z0, an unbiased estimator of I can be
obtained as a multiple importance sampling combination:

F =
∑
s,t

Cs,t(x) (3)

with the following definitions:

Cs,t(x) = ws,tC
∗
s,t (4)

C∗s,t(x) =
f(x)

ps,t(x)
(5)

ps,t(x) = ps(x)pt(x) (6)

ws,t =
ps,t(x)∑

(i,j)∈Fk
pi,j(x)

(7)

While a complete analysis of the above formulas is beyond
the scope of this paper (we refer the reader to [Veach 1997]),
we feel it is important to make the following remarks:

remark 1: the multiple importance sampling weight ws,t

can also be expressed as:

ws,t =

ps,t
f∑

(i,j)∈Fk

pi,j
f

=
1

C∗s,t

 ∑
(i,j)∈Fk

1

C∗i,j

−1

(8)

remark 2: if importance sampling is used, the connection
term C∗s,t effectively contains only the parts of f which have
not been importance sampled; particularly, if ps and pt im-
portance sample all terms of the measurement contribution
function up to the s-th and t-th light and eye vertex re-
spectively, Cs,t will be proportional to the BSDFs at the
connecting vertices times the geometric term G(ys−1, zt−1).
This is the only remaining singularity, which gets eventu-
ally suppressed in Cs,t by the multiple importance sampling
weight ws,t. In fact, simplifying equation (4), one gets:

Cs,t(x) =
f(x)∑

(i,j)∈Fk
pi,j(x)

2.1 The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is a Markov-Chain
Monte Carlo method that, given an arbitrary target distribu-
tion π(x), builds a chain of samples X1, X2, . . . that have π
as the stationary distribution, i.e. limn→∞ p(Xn) = π(Xn).
The algorithm is based on two simple steps:

proposal: a new sample Y is obtained from X = Xi by
means of a transition kernel K(Y |X)



acceptance-rejection: Xi+1 is set to Y with probability:

A(Y |X) = min

(
1,
π(Y )K(X|Y )

π(X)K(Y |X)

)
(9)

and to Xi otherwise.

Importantly, note that π can be defined up to a constant.
In other words, if

∫
π(x)dx = c, the algorithm will simply

admit π/c as its stationary distribution.

Finally, it is also possible to use mutations in which the pro-
posal K(Y |X) = K(Y ) depends only on Y : in this case, the
mutation type is called an independence sampler [Tierney
1994].

2.2 Primary Sample Space Metropolis Light Trans-
port, done right

Kelemen et al [2002] showed that if one considers the trans-
formation T : U → Ω that is typically used to map random
numbers to paths when performing forward and backward
path tracing (i.e. when sampling eye and light subpaths),
one can handily apply the Metropolis-Hastings algorithm on
the unit hypercube U instead of bothering about the more
complex path space. The advantage is that crafting muta-
tions in U is much easier to implement - a simple Gaussian
kernel will do - and will often lead to better mutations, since
they will naturally follow the local BSDFs.1 The only thing
that needs to be taken care of is pulling back the desired
measure from Ω to U , which is easily achieved by multi-
plying by the Jacobian of the transformation T , which is
nothing more than the reciprocal of path probability:

I =

∫
U

f(T (u))

∣∣∣∣dT (u)

du

∣∣∣∣ du =

∫
U

f(T (u))

p(T (u))
du (10)

Very unfortunately, they chose a suboptimal mapping and a
suboptimal target distribution.

In fact, what they did was to consider a mapping from the
product of two infinite-dimensional unit hypercubes (which
itself poses some interesting definition challenges), to the
product space of light and eye subpaths sampled using Rus-
sian Roulette terminated path tracing. Furthermore, instead
of simply considering the single path obtained by joining the
two endpoints of the respective subpaths, and using the mea-
surement contribution function as the target distribution,
they considered the sum of the MIS weighted contributions
from all paths obtained joining any two vertices of the light
and eye subpaths. The reason why they did this can be
understood: this was the historical way to perform bidirec-
tional path tracing. In order not to waste any vertex, one
would reuse all of them at the expense of some added corre-
lation and some added shadow rays. However, it turns out
this is undesirable for several reasons:

reason 1: by joining all vertices in the generated subpaths,
and summing up all the weighted contributions from the ob-
tained paths (which are in fact truly different paths, except
for the fact they share their light and eye prefixes), they were
using a target distribution which was no longer proportional

1This can, however, be detrimental in cases of complex occlu-
sion, where the original path space MLT is generally superior.
The reason is that the BSDF parameterizations might squeeze
unoccluded, off-specular directions into vanishingly small regions
of the primary sample space.

to path throughput (or rather, the measurement contribu-
tion function we are finally interested in). In other words,
the obtained paths have a skewed distribution which is not
necessarily optimal.2

reason 2: dealing with the infinite dimensional unit hy-
percubes introduces some unnecessary algorithmic compli-
cations, including the need for lazy coordinate evaluations.

reason 3: by joining all vertices in the generated subpaths,
we are introducing some additional sample correlation that
might not necessarily improve the per-sample efficiency. In
some situations, for example in the presence of incoherent
transport, it will in fact reduce it.

We now propose a much simpler variant. Let’s for the mo-
ment consider the space of paths of length k, and a single
technique i ∈ Fk to generate them, where i defines the num-
ber of light vertices and the number of eye vertices is given
as j = k+ 1− i. If sampling n vertices through path tracing
requires m·n random numbers, we will consider the following
definition of the primary sample space:

Ui = [0, 1]m·i × [0, 1]m·(k+1−i). (11)

The transformation T = Ti : U → Ωk will have the following
Jacobian: ∣∣∣∣dT (u)

du

∣∣∣∣ =
1

pi(T (u))
. (12)

We now have two options for the choice of our target distri-
bution. The simplest is to set:

πi(u) =
f(T (u))

pi(T (u))
. (13)

This choice keeps the corresponding path space distribution
invariant relative to the area measure µ, as we have:

πi(u)du = πi(u)pi(T (u))|dµ(T (u))/du|du
= πi(u)pi(T (u))dµ(T (u))

= f(T (u))dµ(T (u))

= π̄(T (u))dµ(T (u)). (14)

In other words, it ensures that all our distributions πi(u)
are designed to have a distribution in their primary space
Ui that becomes the same distribution π̄(x) = f(x) in path
space.

The second choice is to set:

πi(u) = wi(T (u))
f(T (u))

pi(T (u))
, (15)

exploiting the fact that, while now the corresponding path
space distributions π̄i(x) = wi(x)f(x) are biased,3 our de-
sired path space distribution f is obtained as their sum:∑

i∈Fk

π̄i(x) =
∑
i∈Fk

wi(x)f(x) = f(x). (16)

2One can consider their technique to generate path bundles and
in this sense their target distribution is optimal for the constructed
bundles, relative to the overall bundle contribution, but not for
the individual paths.

3In practice instead of sampling f , they are sampling a version
downscaled locally according to the efficiency of pi



This definition leads to some interesting properties. First
and foremost, we have the following simplifications:

πi(u) =
f(T (u))∑

j∈Fk
pj(T (u))

(17)

Second, in each primary sample space the target distribu-
tion depends only on the path x = T (u), but not on the
particular choice of technique i used to generate it. In other
words, if ui ∈ Ui and uj ∈ Uj map to the same path
x = Ti(u

i) = Tj(u
j), we have:

πi(u
i) = πj(u

j) (18)

In particular, the target distribution depends only on how
well the sum4 of the individual pdfs pi approximate f . This
is an interesting result, as we will see later on.

Third, notice that if all bidirectional techniques are included
in Fk, the target distribution does not contain any of the
weak singularities induced by the geometric terms. This is
the case because each pdf includes all but one of the geo-
metric terms: thus their sum will contain all of them, and
counterbalance those in the numerator of (18). In partic-
ular, this means there will be no singular concentration of
paths near geometric corners.5 Notice that this would have
not been the case if we simply adopted π = f/pi, omitting
the multiple importance sampling weight.

2.3 Auxiliary distributions

Šik et al [2016] proposed using an auxiliary distribution
in conjunction with replica exchange [Swendsen and Wang
1986] to help the primary MLT chain escape from local max-
ima. The auxiliary distribution is designed to be easier to
sample, and hence favor exploration. Given they were work-
ing in the context of the original PSSMLT formulation where
all connections are performed, they proposed using an auxil-
iary distribution with a target defined as 1 if any of the paths
formed provides a non-zero contribution, and 0 otherwise.

A similar but even easier objective can be achieved by simply
dropping all connection terms except for visibility, i.e. the
only terms which are not sampled by our local path sampling
technique, giving:

π′(u) = V (ys−1 ↔ zt−1) (19)

which in path space becomes:

π̄′(x) = V (xs−1 ↔ xs)pi(x) (20)

Notice that due to our use of primary sample space muta-
tions, this function is very easy to sample, as our base sam-
pling technique already generates samples distributed ac-
cording to pi. Importantly, we might not even need Metropo-
lis at all, as we could simply use our path generation tech-
nique as an independence sampler, akin to the large steps
in the original work of Kelemen et al [2002]. However, us-
ing Metropolis with local perturbations might still help in
regions with difficult visibility.

4Equivalently, their average, since π is here defined up to a
constant.

5The only sources of singularities can be the Diracs in unsam-
pled specular BSDFs in SDS paths (not containing any DD edge).

2.4 Handling color

In the above we treated f as a scalar, though in practice it
is actually a color represented either in RGB or with some
other spectral sampling. While handling spectral rendering
in all generality can require custom techniques [Wilkie et al.
2014] and is beyond the scope of this paper, for RGB (and
even in many cases of spectral transport) it is sufficient to
use the maximum of the components f∗ = maxi{(f)i} when
constructing the target distribution, and weighting the re-
sulting color samples accordingly before final image accumu-
lation.

3 Charted Metropolis-Hastings

Before introducing our light transport algorithm, we intro-
duce a novel family of general Markov chain Monte Carlo
algorithms inspired by the primary sample space MLT for-
mulation we just described. The idea is that we want to
allow jumping between different primary sample spaces.

Suppose in all generality that we have an arbitrary target
space (Ω, µ), a function f : Ω → R we are interested in
sampling, and a parametric family of sampling charts F =
(Ui, Ti, Ri)i=0,...,n−1 such that:

Ui is a measured primary sample space;

Ti is a forward map, Ti : Ui → Ω with density pi : Ω→ R;

Ri is a reverse map, Ri : Ω→ Ui with density ri : Ui → R;

Now, consider again the distributions defined by:

πi(u) =
f(Ti(u))∑
i pi(Ti(u))

(21)

The idea is that we could use the reverse maps Ri, which can
be interpreted as inverse sampling functions, to perform the
desired jumps between primary sample spaces, e.g perform-
ing swaps in the context of a replica exchange framework
where we run n chains, each sampled according to a differ-
ent πi. We now show how to achieve it.

Given two states, ui
1, generated by the i-chain, and uj

2, gen-
erated by the j-chain, consider their target space mappings:

x1 := Ti(u
i
1)

x2 := Tj(u
j
2)

and their reverse mappings:

uj
1 := Rj(x1)

ui
2 := Ri(x2)

if we wanted to perform a swap, preserving detailed balance
between the chains requires accepting the swap with proba-
bility:

A = min

(
1,
πi(u

i
2)πj(u

j
1)ri(u

i
1)rj(u

j
2)

πi(ui
1)πj(u

j
2)ri(ui

2)rj(u
j
1)

)
(22)

This can be proven by looking at the two chains as an en-
semble in the space Ui ×Uj , with target distribution πi · πj .
Equation (22) is then obtained from equation (9) following
the usual Metropolis-Hastings rule described in section 2.1,
viewing (ui

1, u
j
2) as the current state and (ui

2, u
j
1) as the pro-

posal.
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Figure 2: Charted Metropolis-Hastings allows performing
coordinate changes between the target space Ω and its sam-
pling charts. When multiple points of a given sampling do-
main map to a single point in Ω, it’s sufficient for the right
inversion mappings to return one of them (as for the case
of u0), or return one picked at random inside the basin (as
for the case of u3) with the help of an additional sampling
domain (V3, light violet box).

In the previous section we saw that our target distributions
πi assume the same value on the same points of Ω, inde-
pendently of the underlying technique i used to generate it.
Now suppose Ri was a right inverse of Ti, i.e:

Ti(Ri(x)) = x ∀x ∈ Ω; (23)

this would guarantee that, if uj = Rj(Ti(u
i)), we would

have:

πj(u
j) = πi(u

i). (24)

This property is essentially stating that our target distri-
bution is invariant under a change of charts of the target
space.

In this case, equation (22) simplifies to:

A = min

(
1,
ri(u

i
1)rj(u

j
2)

ri(ui
2)rj(u

j
1)

)
(25)

without requiring any evaluation of the target distributions.
Notice that we don’t require the transformations Ti to be
fully invertible: if the fiber of T←i (x) contains several points,
it’s sufficient that Ri returns one of them. In fact, this can
be made even more general by randomizing the selection of
the point in the fiber.

We do so by extending the domains in which the func-
tions Ri operate. I.e. we consider the family F =
(Ui, Vi, Ti, Ri)i=0,...n−1 where Ui and Ti are defined as be-
fore, but:

Vi is a measured reverse sampling space, and

Ri is an extended right-inversion map, Ri : Ω × Vi → Ui,
such that:

Ti(Ri(x, v)) = x ∀x ∈ Ω and ∀v ∈ Vi.

With these definitions, we can draw two uniform random
variables v1 ∈ Vi and v2 ∈ Vj , and replace the reverse map-

pings uj
1 and ui

2 with:

uj
1 := Rj(x1, v1)

ui
2 := Ri(x2, v2)

which can now be tested for acceptance with the same ac-
ceptance ratio:

A = min

(
1,
ri(u

i
1)rj(u

j
2)

ri(ui
2)rj(u

j
1)

)
.

This construction is depicted in Figure 2, where:

a) the chart U0 contains two points, u0 and u′0, that map
to the same point x ∈ Ω, but R0(x) selects just one of
them, in this case u0;

b) the chart U3 contains an entire basin that maps to x,
but its points are identified by means of points of the
reverse sampling domain V3.

A similar mathematical framework can be used in the con-
text of serial (or simulated) tempering [Marinari and Parisi
1992]. In this context, one could run a single chain ui = (u, i)
in an extended state space U × F, where i denotes the tech-
nique used to map the chain to target space. Drawing a
uniform random variable v ∈ Vi and swapping from i to j
through the transformation:

uj = Rj(u
i, v)

would then require accepting the swap with probability:

min

(
1,
ri(u

i)

rj(uj)

)
(26)

and rejecting it otherwise. Once again, no evaluation of the
target distributions is required. We call both this and the
above mutations chart swaps or coordinate changes.

Notice that if there is a way to craft mutations in the target
space itself, it is always possible to add the identity chart to
F:

Un = Ω, Vn = ∅

Tn(x) = Rn(x) = x;

care must only be taken in adding the probability pn = 1 to
the denominator of all the distributions πi in equation (21).

Finally, we consider a third type of mutations, inverse pri-
mary space perturbations, which can be in a sense considered
the dual of the above. Suppose we are now running a chain
in the target space Ω, distributed according to π(x). We can
then use inversion to momentarily parameterize the target
space through a given technique i and take a detour or move
down from Ω to Ui to perform a symmetric primary sample
space perturbation there, before finally getting back to Ω.
With this scheme, given a state x and a uniform random
variable v ∈ Vi, applying the transformation Ri to obtain
u = Ri(x, v) and the perturbation kernel K to obtain the
proposal u′ = K(u) and y = Ti(u

′), would result in the
following acceptance ratio:

A(y|x) = min

(
1,
π(y)K(u|u′)ri(u′)
π(x)K(u′|u)ri(u)

)
(27)



which ends up being the standard primary sample space for-
mula if ri(u) = 1/pi(T (u)) and K is symmetric:

A(y|x) = min

(
1,
π(y)

pi(y)
· pi(x)

π(x)

)
. (28)

The only requirement would be to have Ri respect exactly
the reciprocal of the density of Ti - although we stress that
equation (27) is valid even if this condition is not met.

We call this family of MCMC algorithms that jump between
charts of the target space charted Metropolis-Hastings, or
CMH.

4 Charted Metropolis Light Transport

It should now be clear how the above algorithms can be ap-
plied to light transport simulation. If we consider the frame-
work for primary sample space MLT outlined in section 2.2,
it is sufficient to add functions for path sampling inversion to
be able to apply our new charted Metropolis-Hastings replica
exchange or serial tempering mutations in conjunction with
the standard set of primary sample space perturbations. The
advantage of these mutations is that they will allow to more
easily escape from local maxima when the current sampling
technique is not locally the best fit for f . The mutations are
relatively cheap, as they don’t require any expensive evalu-
ations of the target distribution.

Moreover, and very importantly, the algorithm is made prac-
tical by not requiring the path sampling functions Ti to be
classically invertible. In the context of light transport simu-
lation this property is crucial, as BSDF sampling is seldom
invertible: in fact, with layered materials often a random
decision is taken to decide which layer to sample, but the
resulting output directions could be equally sampled (with
different probabilities) by more than one layer. Our frame-
work requires to return just one of them, but it also allows
selecting which one at random with a proper probability.
All is needed is the ability to compute the density of the
resulting transformation. This construction is illustrated in
Figure 3, where the chart U3,2 contains two points, u3,2 and
u′3,2, that map to the same path x, but R3,2(x) selects just
one of them, in this case u′3,2.

Further on, by adding the identity target space chart, we
can also add the original path space mutations proposed by
Veach and Guibas [1997], potentially coupled with the new
inverse primary space perturbations.

We call the family of such algorithms charted Metropolis light
transport, or CMLT.

4.1 Connection to path space MLT

The new algorithms can be considered as a bridge between
primary sample space MLT and the original path space MLT
proposed by Veach and Guibas [1997]. In fact, one of the
advantages of the original formulation over Kelemen’s vari-
ant [2002] was its ability to break the path in the middle and
resample the given path segment with any arbitrary bidirec-
tional technique. This ability was entirely lost in primary
sample space, as the bidirectional sampling technique was
implicitly determined by the sample coordinates (or needed
to be chosen ahead of time in the version we outlined in
section 2.2). While Multiplexed Metropolis Light Transport
(MMLT) [Hachisuka et al. 2014] added the ability to change
technique over time, as the coordinates u were kept fixed,

such a scheme was leading to swap proposals that sample
unrelated paths: in fact, two techniques i and j map the
same coordinates u to different paths Ti(u) 6= Tj(u) that
share only a portion of their prefixes (in other words, the
two resulting paths are spuriously correlated by the algo-
rithm, whereas in fact there is no reason for them to be).
Our coordinate changes, in contrast, preserve the path while
changing its parameterization, thus allowing to simply per-
turb it later on with a different bidirectional sampler.

Adding the identity path space chart and inverse primary
space perturbations makes the connection even tighter, al-
lowing to smoothly integrate the original bidirectional muta-
tions and perturbations with an entirely new set of primary
sample space perturbations.

Notice that while inverse primary space perturbations could
also be applied to a single path space chain, the advantage of
also incorporating primary space chains in a replica exchange
or serial tempering context is that the target distributions
(defined by equation 21) become generally smoother due to
the implicit use of the multiple importance sampling weight,
raising the acceptance rate.

4.2 Alternative parameterizations

While the original primary sample space Metropolis used
path space parameterizations based on plain BSDF sam-
pling, it is also possible to use other parameterizations that
can provide further advantages: for example the half vector
space parameterizations that have been recently explored
[Kaplanyan et al. 2014; Hanika et al. 2015].

4.3 Density Estimation

So far, we have concentrated on standard bidirectional path
tracing with vertex connections. However, all the above ex-
tends naturally to density estimation methods, using the
framework outlined in [Hachisuka et al. 2012]. The only
major difference is the computation of the subpath proba-
bilities.

However, in order to combine density estimation into our
new framework, we here suggest a novel approach. Instead
of using density estimation as an additional technique, ap-
plying multiple importance sampling to combine it into a
unique estimator, we use it only to craft additional propos-
als. In other words, we use density estimation as another
independence sampler. Suppose again at some point in time
our chain is in the state ui. We can then try to build a can-
didate path through density estimation with the (s + 1, t)-
technique and, if the resulting path has non-zero contribu-
tion, we can drop one light vertex (and the corresponding
primary sample space coordinates) and consider it as a new
proposal ui

de. Notice that in doing so, we have to adjust the
acceptance ratio for the actual proposal distribution. For
clarity, we will now omit the superscripts s, t, and obtain:

A(ude|u) = min

(
1,
π(ude)pde(T (u))

π(u)pde(T (ude))

)
(29)

where pde(x) is the probability of sampling the path x by
density estimation (which can be approximated at the cost of
some bias as described in [Hachisuka et al. 2012] or estimated
unbiasedly as in [Qin et al. 2015]).

If we want to further raise the acceptance rate, we can also
mix this proposal scheme with an independence sampler
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Figure 3: A visualization of the path space charts, where multiple primary space coordinates may map to the same path.

based on bidirectional connections and combine the two, cal-
culating the total expected probability to make both more
robust:

A(u′|u) = min

(
1,
π(u′)(pde(T (u)) + pbc(T (u)))

π(u)(pde(T (u′)) + pbc(T (u′)))

)
. (30)

Notice that this formula is now agnostic of how the samples
were generated in the first place, i.e. whether the candidate
u′ was proposed by density estimation or bidirectional con-
nections: this is a positive side-effect of using expectations.6

4.4 Designing a complete algorithm

So far we have only constructed a theoretical background
to build novel algorithms, but we didn’t prescribe practical
recipes. The way we combine all the above techniques into
an actual algorithm is described here.

First of all, we start by estimating the total image brightness
with a simplified version of bidirectional path tracing. The
algorithm first traces Ninit light subpaths in parallel and
stores all generated light vertices. Then it proceeds tracing
Ninit eye subpaths, and connects each eye vertex to a single
light vertex chosen at random among the ones we previously
stored. At the same time, the EDF at each eye vertex is
considered, forming pure path tracing estimators with light
subpaths with zero vertices. All evaluated connections (both
implicit and explicit) with non-zero contribution (which rep-
resent entire paths, each with a different number of light and
eye vertices s and t) are stored in an unordered list.

6while this looks similar to multiple importance sampling, it
is not quite the same: multiple importance sampling is a more
general technique used to combine estimators, whereas here we
are just interested in computing an expected probability density,
using so called state-independent mixing [Geyer 2011]. However,
multiple importance sampling using the balance heuristic is equiv-
alent to using an estimator based on the average of the probabili-
ties, which is exactly the expected probability we need: hence the
reason of the similarity. This approach is the same used in the
original MLT to compute the expected probability of bidirectional
mutations.

Second, in order to remove startup bias, we resample a popu-
lation of N seed paths for a corresponding amount of chains.
In order to do this, we build the cumulative distribution over
the scalar contributions of the previously stored paths, and
resample N of them randomly.

Notice that the N seed paths will be distributed according
to their contribution to the image. Particularly, the number
of paths sampled with technique i will be proportional to the
overall contribution of that technique, and similarly for path
length. At this point, though not crucial for the algorithm,
we sort the seeds by path length k so as to improve execution
coherence in the next stages. In practice, sorting divides the
N seeds into groups of Nk paths each, such that

∑
kNk = N .

Finally, we run the N Markov chains in parallel using
both classic primary sample space perturbations and the
novel simulated tempering or replica exchange mutations de-
scribed in sections 3 and 4. As the new mutations have a
low cost compared to performing actual perturbations, they
can be mixed in rather frequently.

5 Implementation

We implemented our algorithm, together with MMLT and
bidirectional path tracing (BPT) in CUDA C++, exposing
massive parallelism in every single stage, including ray trac-
ing, shading, cdf construction (prefix sum), resampling and
sorting (radix sort). The basic bidirectional path tracing al-
gorithm is constructed as a pipeline of kernels (also known
as wavefront tracing), and relies on the OptiX Prime library
for ray tracing. For the sake of our experiments, we ran all
tests on an NVIDIA Maxwell Titan X GPU.

Both our CMLT and MMLT implementations run several
thousand chains in parallel, using the seeding algorithm de-
scribed in section 4.4. Besides being strictly necessary to
scale to massively parallel hardware, we found this to pro-
duce some additional image stratification. The CMLT im-
plementation is based on the serial tempering formulation.

Our framework employs a layered material system that com-
bines a diffuse BSDF (Lambertian) and rough glossy reflec-



Figure 4: A simple test scene featuring direct lighting from two equally sized area lights: the first, with spatially varying
emission properties, partially blocked by a thin black strip; the second only reachable through a tiny hole. From left to right,
first row: PSS-MLT-1, PSS-MLT-2, PSS-MLT-AVG, reference image. Second row: PSS-MLT-MIX, CMLT-IPSM, CMLT,
reference image.

tion and transmission BSDFs (GGX) using a Fresnel weight-
ing. Sampling of the glossy component is implemented using
the distribution of visible normals [Heitz and D’Eon 2014],
and selection between the diffuse and glossy components is
performed based on Fresnel weights. Clearly, this path sam-
pling scheme is not invertible, as both the diffuse and glossy
components can map different primary sample space values
to the same outgoing directions. Hence, we used the machin-
ery described in section 3.3 to enable randomized inversion.

Our implementation of CMLT doesn’t include yet our new
density estimation based proposals, which we leave as future
work.

5.1 Chart swaps and path inversion

Given a bidirectional path generated by the technique (s, t)
using coordinates u, in order to perform a chart swap we
propose a new pair (s′, t′) distributed according to the total
energy of the techniques (i.e. the normalization constants
of the target distributions). After the candidate is sampled,
path inversion needs to be performed using the transforma-
tion u′ = Rs′,t′(Ts,t(u)). This transformation can be widely
optimized noticing that there are only two cases:

s′ > s: in this case it is only necessary to invert the coor-
dinates of the light subpath vertices {ys, ..., ys′−1}.

t′ > t: in this case it is only necessary to invert the coordi-
nates of the eye subpath vertices {zt, ..., zt′−1}.

Computing the inverse pdf rs,t can be optimized analogously.

6 Results

We performed two sets of tests. The first is aimed at test-
ing the many possible algorithmic variations of CMLT on a
simplified light transport problem. The second, using full
light transport simulation, compares a single CMLT variant
against MMLT, which could be currently considered state-
of-the-art in primary sample space MLT.

6.1 Simplified light transport tests

This test consists of rendering an orthographic projection of
the XY plane directly lit by two area light sources. The first
light is a unit square on the plane Y = 0, with a spatially
varying emission distribution function changing color and
increasing in intensity along the X axis. The light source is
partially blocked by a thin black vertical strip near its area of
strongest emission. The second light is another unit square
on the plane Y = 1, with uniform green emission properties.
This light is completely blocked except for a tiny hole.

In this case, our path space consists of two three-dimensional
points: the first on the ground plane, the second on the light
source. As charts, we used two different parameterizations:

1. generating a point uniformly on the visible portion
of the ground plane and a point on the light sources
distributed according to their spatial emission kernels
(corresponding to path tracing with next-event esti-
mation, i.e. the bidirectional path tracing technique
(s, t) = (1, 1));

2. generating a point uniformly on the visible portion of
the ground plane, sampling a cosine distributed direc-
tion, and intersecting the resulting ray with the scene
geometry to obtain the second point (corresponding to



Algorithm n = 16 · 10e6 n = 128 · 10e6
PSS-MLT-1 8.287 · 10e-2 3.212 · 10e-2
PSS-MLT-2 4.073 · 10e-2 1.488 · 10e-2
PSS-MLT-AVG 4.106 · 10e-2 1.587 · 10e-2
PSS-MLT-MIX 3.663 · 10e-2 1.405 · 10e-2
CMLT-IPSM 3.924 · 10e-2 1.467 · 10e-2
CMLT 3.502 · 10e-2 1.374 · 10e-2

Table 1: Root mean square error of the images computed
by the various algorithms we tested in figure 4.

pure path tracing, i.e. the bidirectional path tracing
technique (s, t) = (0, 2)).

Both charts have a four dimensional domain, and in both
cases we used exact inverses of the sampling functions.

We tested six different MCMC algorithms:

PSS-MLT-1: a single PSS-MLT chain using the first pa-
rameterization;

PSS-MLT-2: a single PSS-MLT chain using the second
parameterization;

PSS-MLT-AVG: two PSS-MLT chains using both the
first and the second parameterization, both distributed
according to eq. (13), where the accumulated image
samples are weighted (i.e. averaged) through multiple
importance sampling with the balance heuristic;

PSS-MLT-MIX: two PSS-MLT chains using both the
first and the second parameterization, each distributed
according to eq. (15);

CMLT-IPSM: a single CMLT chain in path space alter-
nating inverse primary space mutations using the first
and the second parameterizations;

CMLT: two CMLT chains using both the first and the sec-
ond parameterization as charts, coupled with replica-
exchange swaps performed every four iterations;

Results are shown in Figure 3, while their root mean square
error (RMSE) is reported in Table 1. All images except for
the reference were produced using the same total amount of
samples n = 16 · 106: PSS-MLT-1, PSS-MLT-2 and CMLT-
IPSM running a single chain of length n, whereas PSS-
MLT-AVG, PSS-MLT-MIX and CMLT running two chains
of length n/2. In table 1 we further report RMSE values for
n = 128 · 106. The reference image has been generated by
plain Monte Carlo sampling.

As can be noticed, our PSS-MLT-MIX formulation using the
distributions defined by equation (15) is superior to simply
averaging two PSS-MLT chains using multiple importance
sampling (PSS-MLT-AVG), which is in fact worse than PSS-
MLT using a single chain according to the second distribu-
tion (PSS-MLT-2).

CMLT-IPSM produces results that are just slightly worse
than PSS-MLT-MIX, but still superior to all other PSS-MLT
variants. The reason why CMLT-IPSM is inferior to PSS-
MLT-MIX is that while the target distribution for CMLT-
IPSM is proportional to f , the target distributions of the
chains in PSS-MLT-MIX are smoother due to the embed-
ded multiple importance sampling weights, and contain no
singularities.

Finally, CMLT produces the best results among all algo-
rithms.

6.2 Full light transport tests

For these tests we compared the CMLT implementation
described in section 5 against our own implementation of
MMLT. We provide four test scenes representative of differ-
ent transport phenomena:

Escher’s Box: an M.C. Escher themed adaptation of the
Cornell Box, featuring both diffuse and glossy surfaces.
This scene contains two light sources: the large back
wall, with a variable Lambertian emission distribution
displaying a famous painting by the artist, and a smaller
area light on the ceiling. The smaller light is par-
tially blocked by a rough glossy reflector, which causes
a blurry caustic on the partially glossy ceiling.

Escher’s Glossy Box: a variation of the above scene in
which all surfaces are glossy (with no diffuse compo-
nent), with variable roughness (with GGX exponents
ranging between 5 and 100). Notice that this scene
contains a variety of caustics of all frequencies (in a
sense, all lighting is due to caustics). This scene con-
tains an additional large off-screen area light mimicking
the sky.

Escher’s Textured Glossy Box: same as above, with
textures that modulate the amount of reflection.

Escher’s Box with Wall Ajar: another variation of the
above scene mimicking Eric Veach’s famous scene the
door ajar. Most of the lighting in the scene comes
from an area light hidden beneath the sliding back wall.
Again, the area light has variable surface emission prop-
erties. The ceiling area light source is also considerably
smaller, and the surfaces are roughly half diffuse half
glossy. The short red box also features rough transmis-
sion.

It is important to note that while the scenes look superfi-
cially similar, they stress entirely different transport phe-
nomena. Moreover, all of them are very complex to render,
requiring between 16 · 103 and 128 · 103 samples per pixel
(spp) for bidirectional path tracing to converge.

Figure 6 shows equal-time comparisons of MMLT and CMLT
on all scenes. Except for the last row, both the MMLT and
CMLT renders were generated using 64 spp, taking roughly
the same computation time, whereas the reference images
have been rendered with bidirectional path tracing using
32K spp. The images in the last row used 256 spp for MMLT
and CMLT, and 128K spp for the reference image.

CMLT produces considerably less noise on all test scenes.
Notice that while the caustic on the ceiling in the last scene
is hardly visible in both the MMLT and CMLT renders, this
is only due to the relatively low number of samples: both do
converge to the correct result after a sufficiently long time
(with CMLT, the caustic starts to be fully visible at 512
spp).

Figure 7 shows the convergence of MMLT and CMLT on the
hardest of the four scenes. Notice how MMLT needs almost
twice as many samples as CMLT to get approximately the
same RMSE.

Figure 8 shows a similar graph comparing also to PSSMLT.
Since each PSSMLT sample requires both more shadow rays



(a) 32 spp (b) 128 spp (c) 512 spp

Figure 5: Parallel CMLT convergence using respectively
32K (top row) and 256K chains (bottom row). From left to
right: 32, 128 and 512 samples per pixel.

and BSDF evaluations, in our implementations PSSMLT can
perform roughly one half the mutations as CMLT in the
same time.

Finally, Figure 5 shows the effect of varying the number of
chains run in parallel, trading it against chain length to keep
the total number of samples fixed. The images in the top
row are obtained running 32K chains in parallel, whereas
the ones in the bottom row are obtained using 256K chains.
It can be seen that using more, shorter chains generally im-
proves stratification. The exception is the caustic on the
ceiling that benefits from the higher adaptation of the longer
chains. In practice, this parameter trades exploration for
stratification.

In all cases, for CMLT we used one chart swap proposal
every 32 mutations, resulting in negligible overhead. On our
system, the 1k spp CMLT and MMLT images take roughly
2 minutes to render at a resolution of 1600 x 900.

7 Discussion

We proposed a novel family of MCMC algorithms that use
sampling charts to extend the sampling domain and allow
better exploration. We applied the new scheme to propose a
new type of light transport simulation algorithms that bridge
primary sample space and path space MLT.

We also showed that the new algorithms arising from this
framework require to implement only a new set of rela-
tively cheap mutations that can be constructed using simple,
stochastic right inverses of the path sampling functions: par-
ticularly, the fact our framework requires only such type of
probabilistic inversion is what makes the algorithm practical,
as classical BSDF inversion with layered material models is
generally impossible. We believe this to be a major strength
of our work.

We implemented both the old and new methods exposing
massive parallelism at all levels, and showed how increas-
ing the number of chains that run in parallel can increase
stratification.

Finally, we suggested a novel, simpler method to integrate
path density estimation into MCMC light transport algo-

rithms as a mechanism to craft independent proposals.

7.1 Future work

There are multiple venues in which this work could be ex-
tended. The first is testing all possible variants of our new
algorithmic family more thoroughly. In such context, it will
be particularly interesting to test the combination with the
original path space MLT mutations, which might provide
some advantages in regions with complex visibility. Simi-
larly, it would be interesting to test the new technique for
including path density estimation as an independence sam-
pler.

Another potential venue is considering dimension jumps to
switch between the charts underlying different path spaces
Ωk and Ωk′ . This could be achieved using the Metropolis-
Hastings-Green with Jacobians algorithm as described in
[Geyer 2011].

Finally, it would be interesting to integrate half vector space
light transport [Kaplanyan et al. 2014; Hanika et al. 2015]
as yet another path space chart.
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