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SESSION 1

TRAINING OF DEEP NETWORKS WITH HALF-
PRECISION FLOAT

Boris Ginsburg - Deep Learning Engineer, NVIDIA




INTRODUCTION
Training with FLOAT 16 has many potential benefits:

1. Smaller memory footprint:

+ ~2x if we keep weights, activations and gradients in FLOAT16 instead FLOAT

/. Faster training:
+ compute bounded layers (if HW supports FLOAT16 math - GP100)
* memory bounded layers (ReLU, BatchNorm, ...)

* multi-GPU synchronization

Main challenge: narrow numerical range can result in
underflow or overflow.

5 <A NVIDIA.



HALF-PRECISION FLOAT (FLOAT16)

sign exponent fraction

(5 bit) (10 bit)
float16
sign exponent fraction
(8 bit) (23 bit)
float

FLOAT16 has very narrow numerical range

Normal range: [ 6x10 , 65504 ]
Sub-normal range: [ 6x108 , 6x107 ]

FP16

—1I27 —24I —1I4 E) 1I5 12IB
FLOAT 32
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TRAINING FLOW
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FLOAT16 MODES

Mode Data Math Update Comment

Float 32 32 32 Baseline: all float

2 copy of weights: float16 for forward-
backward and float for update

32 For GPUs with FP16 math

-“Native” float16
32 -For GPUs without FP16 math

32
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Accuracy [%]

ALEXNET: FLOAT16 MATH
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ALEXNET: MIXED MATH

Let’s change backward math from FLOAT16 to FLOAT

100 _Topl

80 b

60 |-

Accuracy [%]

20 L i

— AIexNet_béseline
— AlexNet_fpl6_mix
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Iteration

Accuracy is back! The problem is in the back-propagation



Percentage of values during training
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activation gradient magnitudes
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Percentage of values during training
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Normal range

FP16 range is large (249 with denorms)
Gradients use only low part of FP16 range

We can “shift” gradients to the right
without overflowing

25 <ANVII?.



ALEXNET : FLOAT16 WITH SCALING

To shift gradients dE/dX we will scale up the loss function by constant
(e.g. by 1000):

layer {

type: "SoftmaxWithLoss"
loss weight: 1000.
}

and adjust learning rate and weight decay accordingly:

base lr: 64+ 0.00001 # 0.01 / 1000
welght decay: 660665 0.5 # 0.0005 * 1000

26 NVIDIA.



ALEXNET : FLOAT16 WITH SCALING

Mfp16 with scaling has the same accuracy as float!

Top 1
I I

100

— ﬁlexNet_baseline
| — AlexNet_fpl6_scaled1000
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lteration
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SESSION 2

EXPLORING SPARSITY IN RECURRENT NEURAL
NETWORKS

Sharan Narang - Researcher, Baidu




Speech Recognition with Deep Learning

English
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Scaling with Data

Comparison of Speech Recognition Approaches

Deep Learning
« e e Traditional methods

Accuracy

.....
........................
o0
see®
......
ee°?®
e®
o ®
°®
°®
..
[ ]
°
[ ]
[ ]
[ ]
[ ]
[
[ ]
[ ]
[ ]
o
o

Data + Model Size
(Speed)



Model Sizes
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Pruning Weights

Dense Initial Network Pruning Weights Sparse Final Network
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Pruning Approach
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Results

Model Layer Size # of Params CER Relative Perf
RNN Dense 1760 67 million 10.67 0.0%

RNN Sparse 1760 8.3 million 12.88 -20.71%
RNN Sparse 2560 11.1 million 10.59 0.75%

RNN Sparse 3072 16.7 million 10.25 3.95%

GRU Dense 2560 115 million 9.55 0.0%

GRU Sparse 2560 13 million 10.87 -13.82%
GRU Sparse 3568 17.8 million 9.76 -2.2%




SESSION 3

DEEP WATERSHED TRANSFORM FOR INSTANCE
SEGMENTATION

Min Bal - PhD Student, University of Toronto




Semantic Segmentation Instance Segmentation
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Semantic Segmentation

e Semantic segmentation is a well studied problem

o  Our instance segmentation method leverages an existing technique
o H.Zhao et al, Pyramid Scene Parsing Network, https://arxiv.org/abs/1612.01105
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(a) Input Image (b) Feature Map (c) Pyramid Pooling Module (d) Final Prediction

UNIVERSITY OF

Y TORONTO
Image credit: H. Zhao et al.



Watershed Transform

e C(Classical image segmentation technique
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Overview of Approach

Input Image

Gradient of Energy Landscape Energy Landscape Predicted Instances

Semantic Segmentation £ UNIVERSITY OF
o % TORONTO



Overall Network
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Cityscapes Instance Segmentation Leaderboard

AP* AP* @ 50% AP* @ 50m AP* @ 100m
vanden Brandetal. | 2.3% 3.7% 3.9% 4.9%
Cordts et al. 4.6% 12.9% 7.7% 10.3%
Uhrig et al. 8.9% 21.1% 15.3% 16.7%
Ours 19.4% 35.3% 31.4% 36.8%

* Average Precision (AP): higher is better

. . S%; UNIVERSITY OF
Recently, new approaches have achieved even higher performance. & toronTO



S

ample Output

Input RGB
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Semantic Segmentation

Predicted Instances

Ground Truth Instances



Sample Output

Input RGB Direction Prediction Energy Prediction

ISR

Semantic Segmentation Predicted Instances Ground Truth Instances




SESSION 4

BIDIRECTIONAL RECURRENT CONVOLUTIONAL
NETWORKS AND THEIR APPLICATIONS TO
VIDEO SUPER-RESOLUTION

Qi Zhang - Assistant Professor, Chinese Academy-of Sciences,
Institute of Automation




Video Super-Resolution

Super-resolution:
denoising, deblurring, upscaling

A great need for super resolving

low-resolution videos




1. Single-Image super-resolution [1-6]

One-to-One scheme, super resolve
each video frame independently

lgnore the intrinsic temporal
dependency relation of video frames

Many-to-One scheme, use
multiple adjacent frames
to super resolve a frame

Model the temporal dependency
relation by motion estimation

™ High computational complexity, slow o e




RNN: Recurrent Neural Networks
SR: Super-Resolution

* RNN can model long-term contextual information of
temporal sequences well

* Convolutional operation can scale to full videos of any
spatial size and temporal step

» Propose bidirectional recurrent convolutional networks,
different from vanilla RNN:

1. Commonly-used full connections are replaced
with weight -sharing convolutions

2. Conditional convolutions are added for learning
visual-temporal dependency relation &




* Train the model on 25 YUV format
video sequences

— volume-based training

— number of volumes: roughly 41,000

— volume size: 32 X 32 X 10 L e |55
Training videos

* Test on a variety of real world
videos

— severe motion blur
— motion aliasing
— complex motions

Testing videos S e



PSNR Comparison

PSNR: peak signal-to-noise ratio

Tablel: The results of PSNR (dB) and test time (sec) on the test video sequences.

Video Bicubic SC [25] K-SVD [26] NE+NNLS [4] ANR [13]
PSNR | Time | PSNR | Time | PSNR | Time | PSNR | Time | PSNR | Time
Dancing 26.83 - 2680 | 4547 | 27.69 | 235 | 27.63 | 19.89 | 27.67 | 0.85
Flag 26.35 - 2628 | 1289 | 27.61 | 058 | 2741 | 454 | 27.52 | 0.20
Fan 31.94 - 3250 | 1292 | 3355 | 1.06 | 3345 | 827 | 3349 | 038

Treadmill | 21.15 - 2127 | 1547 | 2222 | 035 | 2208 | 260 | 2224 | 0.12
Turbine 25.09 - 2577 | 1649 | 27.00 | 0.5] 26.88 | 3.67 27.04 | O.18
Average | 26.2/ - 2652 | 2064 | 2761 | 097 | 2749 | 779 | 27.59 | 0.35

Video NE+LLE [3] SR-CNN 6] 3DSKR2T] Enhancer [T] BRCN
PSNR | Time [|PSNR | Time ||PSNR | Time | PSNR | Time | PSNR | Time
"~ Dancing 2764 | 420 || 27.81 1.41 [} 27.81 | 1211 | 27.06 - 2809 | 34
Flag 2748 | 096 || 28.04 | 0.36 ||26.89 | 255 | 26.58 . 28.55 | 0.78
Fan 3346 | 1.76 || 3361 | 060 ||31.91 | 323 | 32.14 s 3373 | 146
Treadmill | 2222 | 0.57 || 2242 | 015 ||2232 | 127 | 21.20 5 2263 | 0.46
Turbine 2698 | 0.80 |]27.50 | 0.23 ||24.27 | 173 ] 25.60 - 27.71 | 0.70
Average | 27.52 | 1.66 ||27.87 | 055 |[26.64 | 418 | 26.52 - 28.15 | 1.36

f.; Surpass state-of-the-art methods in PSNR, due to the effective
[5]1d

%= temporal dependency modelling

[20] OECOO T O, JUDET T SUT IO OO A T OO T AT Ty ot Ty . T C rrr, DU,

[22] Timofte et al., Anchored neighborhood regression for fast example-based super resolution. ICCV, 2013,
[24] Yang et al., Image super-resolution via sparse representation. |IEEE TIP, 2010.

[25] Zevde et al., On single image scale-up using sparse-representations. Curves and Surfaces, 201 2.

DEEP
LEARNING
NVIDIA.  INSTITUTE



Model Architecture

* Investigate the impact of our model architecture on the
performance

* Take a simplified network containing only feedfoward (v)
convolution as a benchmark

« Study its variants by successively adding the bidirectional (b),
recurrent (r)and conditional (¢) schemes

Tablel: The results of PSNR (dB) by variants of BRCN on the testing video sequences.

Video BRCN ||BRCN | BRCN | BRCN BRCN
{v} {v.r} | {v.t} | {v.rt} | {v.r ¢, b}
Dancing 27.81 2798 | 2799 28.09 28.09
Flag 28.04 || 28.32 | 28.39 28.47 28.55
Fan 33.61 33.63 | 33.65 33.65 33.73
Treadmill || 22.42 || 22.59 | 22.56 22.59 22.63
Turbine 27.50 27.47 27.50 27.62 27.71
Average 27.87 || 27.99 | 28.02 28.09 28.15 . | e




Example

Upscaling factor:4
87 x 157 — 348 x 628

Comparison:
Bicubic (top)
Ours (bottom)




SESSION 5

REAL-TIME LIVE VIDEO HIGHLIGHT
IDENTIFICATION AT SCALE: LESSONS LEARNED
FROM YAHOO ESPORTS

Yale Song - Senior Research Scientist, Yahoo Research
Bin Ni - Distinguished Software Architect, Yahoo




Overview
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Video

> | Highlight

Live video DEtECﬁOI’I
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Highlights

“This is exciting!”

Yahoo Esports



Typical Scenes in Esports Video

Commentator Interview Player Audience

Game credit: Heroes of the Storm by Blizzard Entertainment



HIGHLIGHT CNN

Highlight CNNs

| Al ol atl HIIHTL, Highlight vs.
nputVideo == " = ¢ . [T non-highlight




Cascaded prediction

Frrnl_1 # Score, 4
Scene -
Highlight
; - Yes
Frm, [—® Typ‘e —»<_ Game? _~—» Scorer [P Temporal —®» Score,
Classifier (CNN) Smoother | ¥
(CNN)
Frmm No Score,, 4

Scene type categorization

Multi-class classification (aame. replav. studio. audience. ...)
Highlight detection

Binary classification (highlight vs. non-highlight)



Yahoo Esports Dataset

* Three game titles: HotS, LoL, Dota2
« 300 hours of videos (pro league)

 Frame-level annotation
— Scene types
— Highlight scores



Cascaded Architecture is Important

100
80
60
40
20

Average Precision

HotS

& Single

Cascaded

Dota?2

100
80
60
40
20

HotS

& Single

Recall

Cascaded

Dota?
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Highlight Detection as Binary Classification

Average Precision Recall
100 100
80 80
60 60
40 40
20 I I 20
0 0 -
HotS Dota2 HotS Dota2

M Regression -~ Multiclass ™ Binary M Regression - Multiclass ™ Binary
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Played in 2x speec

Visualization was created using Class Activation Mapping, Zhou et al. CVPR 2016
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SESSION 6

IMAGE RESTORATION WITH NEURAL NETWORKS

Orazio Gallo, NVIDIA
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MOTIVATION

The long path of images...

AF/AE |

Bad Pixel
Correction

A MVIDIA



edit: Wikipedia

Image cr

DEMOSAICING

colors by interpolation

Image credit: Marc Levoy

JnviDia



DENOISING

Several types of noise involved in the image formation:
Photon shot noise
Dark current (AKA thermal noise)
Photo-response non-uniformity
Vignetting
Readout noise:
Reset noise (charge-to-voltage transfer)
White noise (during voltage amplification amplification)

Quantization noise (ADC)

A NvVIDIA



DENOISING




CAN WE DO IT WITH A NEURAL NETWORK?




JOINT DEMOSAICING AND DENOISING

Network architecture




MEASURING IMAGE QUALITY

0.988 SSTM

Imaee adapted from https://ece.uwaterloo.cal/~z70wane/ research/ssim/



MEASURING IMAGE QUALITY

li(p) = |Ii(p) — I2(p)

t2(p) = VIt (p) — 13(p)
SSH\I(Il, 12) — 1(11312) ‘ 6(11:12) ' 8(]1112)

MS-SSIM( 14, Is) = Multiscale(SSIM(11, I5))



JOINT DEMOSAICING AND DENOISING

Network architecture

<—

Lymix = a4 + (1 — ) - MS-SSIM
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RESULTS
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RESULTS
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SESSION 7

NOVEL 3D VIEW SYNTHESIS FROM A SINGLE
IMAGE

Jimei Yang - Research Scientist, Adobe
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Synthesizing Object Images from Novel Viewpoints

Input Image Synthesized Views Input Image Synthesized Views Input Image Synthesized Views




Image Composition




Image Composition

Pose adjustment

P e = G =
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Robot Grasp Planning




View Synthesis
as Simulating a New Camera Looking at the 3D Object




First Challenge: Recovering the 3D Structure
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Learning the Relation Between Any Two Views

-

' 18 32 4006 4005
! v 3 W 128 256 4096
Input view ’ | T g . _ : i T - .
- . - — q: = =
. - - . | 4

# 4 |4 F14 =
l Pl Wmz | pse 28

Y Viewpoint 7+, _J )
5Eﬂllmir_‘ll' transformation 55 l— 3
mpiing - 256
= 128 : 256 64
- | < 2
%4 —
1 15 8

4096

Synthesized
view 224

T wome g1

T. Zhou, et al. ECCV 2016

@ DEEP
LEARNING

IIIII IA. | INSTITUTE



Second Challenge: Recovering Hidden Appearance

Input view

B
Output views
R s e S, P& B

™ N e

Bl ot | STy Sy, U

Visibility maps
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An End-to-End Deep Learning Approach

Recovering pixel correspondences

) =
=

CNN

—>

>

—

Recovering hidden appearance

—

CNN
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Disocclusion-aware

Appearance Flow Network

Y

Input View

Desired Output 0
Viewpoint

CNN a

Warped Input

o

Visibility Map

Masked Output
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Completion Network using GANs S

Masked Output

=

L

High-level object identity features from DOAFN

CNN gt CNN .,‘

Output
Completion

_Loss Network | _ GAN
Loss

Perceptual Loss
(Feature level loss)
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View Synthesis Results

- AFN: appearance flow network
- TVSN: transformation-grounded view synthesis network

O T e | —




SESSION 8

IMPROVING CONSUMER COMPLIANCE
THROUGH BETTER PRODUCT
RECOMMENDATION- NEW SKIN ADVISOR TOOL
POWERED BY Al

Matthew L. Barker, Ph.D. - Principal Data Scientist; Procter & Gamble




Development Overview
a N

a )

Deep Learning
Algorithm
Visible skin

age prediction
with aging

area
identification.

A /

o

Visible Skin Age
Validation
Predictions compared
to expert.

o

/
Aging Area Insights

Facial Mapping Study
informs how
appearance of aging
areas change with

chronological age.

\

Compliance
Verification
Proving skin
advisor with
deep learning
algorithm,
visible aging
insights and
consumer
preferences
drives
compliance.




Facial Features & Aging

glabella

CROW'S FEET 1

. marionette lines
nasolabial folds



Deep Neural Network application

* The skin advisor uses convolutional neural networks trained using NVIDIA
graphics processors to perform trillions of calculations per second. The
model was trained on 50,000 images with chronological age data tags.

* When an image of a user is received, the model is used to determine the
visible skin age based on the pixels in the image, further a two-
dimensional heat map is generated that identifies a region of the image
that contributes to the visible skin age.

Convolution Fully connected
E o~ 'S - B!
[ ] - ]
I - ‘I\"\/ - [ {
k\\ :‘ '*- / 1
L il e L ' Predicted A
- e — redicte e
AL ey ;
. V/\ - =} (
A ( .‘ ,'/ \\ - | .
. f 7 \\ .
Raw Image Pixels l /' \ .
x [ .
I - I %
L4 F5 F6

LO (Input) o 2



C

ata Setup

Face detection & alignment performed using dlib: rotated, scaled &
cropped to a standard size.

Spatial augmentation was applied: random horizontal flipping, rotation,
scaling, zoom cropping causing slight translation.

HSV Color augmentation: random changes to saturation & exposure.
Oval Mask, global contrast normalization GCN, reapply Oval Mask.



Gradient Heat Map for Visualization

 After training, with fixed model parameters. A gradient heat map was
created in order to localize pixel differences of a subject’s image relative
to younger than their predicted age.

* Aninput image was forward propagated through the model to obtain a
predicted age. Then a target of predicted age minus 10 years was set
and the gradients were propagated back through the network to the input
Image. A heat map was created by summing absolute values of the RGB
gradients for each pixel and rescaling from 0 to 1 for display purposes.

* The gradient heat map was then blended with the original image to
visualize areas that were different from their younger predicted age.



Visible Skin Age Validation

Evaluate robustness of the visible skin age algorithm by comparing output to
a gold standard dermatologist assessment.

1. Avalidation set of 630 selfie images representing the general US female
population were obtained.

2. These images were presented to 615 dermatologists, who represent the
gold standard in visible skin evaluation, in a randomized order in sets of 8
Images. Each dermatologist evaluated images.

3. The dermatologists were asked to input the perceived age of each image.



Validation Results

The mean difference of the predicted visible skin age versus the chronological age
using the skin advisor deep learning algorithm was comparable to the mean difference
of the perceived age versus the chronological age by dermatologists.

14
12

10

Mean Age Difference

Deep
Learning Dermatologists
Algorithm



Lifestyle Molecular Physical Optical \IJIE]

* To build a fundamental understanding of the underlying mechanisms of facial aging
across different facial sites, a clinical Facial Mapping Study enrolling over 150
subjects

« Study assessed facial skin genomics, image analysis parameters, lifestyle factors,
and skin measurements in two groups of female subjects: a younger ages (20-29
years) and an older ages (55-75 years). Study did not assess applying cosmetics.

* Facial locations analyzed included the forehead, crow’s feet area, under eye,
nasolabial fold, cheek, glabella, marionette lines, above mouth, and nose regions.



Facial Mapping Study - Results

The Skin Advisor Tool shares the best aging area and the area that needs
Improvement based on the deep learning algorithm. Key educational
information about how those areas age is also given.

Insights from the facial mapping study were used to inform how visible aging
areas change with chronological age.

Quantitative assessment of wrinkles revealed distinct visible topography feature
presentation across facial zones and with aging.

Total ‘Wrinkle Area Fraction (%)

Ages 55-75 Ages 20-29
d f ¢ ¢c b f ¢ ¢ a b e d b ab ¢ ab a ab
¥ *
Mo .
- & EH x
GB CF o P UE .
cK NS o F 3 NL o X
GB CFek MNppNS |

A B CDETFGHI

A B CDETFGHI

GB = Glabella CK = Cheek

FH = Forehead
UE = Under Eye

CF =Crow’s Feet LP = Above

NS = Nose

NL = Nasolabial Fold
MN = Marionette

Lip

Figure 2. Total Wrinkle Area Fraction |

Age Group. Anzhysis of Varance [ANC

%) - Facial Site Comparison by



Compliance Verification

« 100 US women, age 25-65, facial moisturizer users, were
enrolled in a 4-week online consumer test.

* Group 1 (n=50) received a product regimen based on the skin
advisor deep learning algorithm and preferences and
Group 2 (n=50) self-selected a product regimen.

« Self-assessment questions were completed pre-use and post-
4 weeks product use.



Compliance Results

Figure 4

Pre-product use indicates satisfaction
with the skin advisor product
recommendation.

Figure 5

Post 4 weeks product use indicates satisfaction
with the skin advisor product recommendation
and improved consumer compliance with longer
product use.
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- .1 THE SCIENCE BEHIND
—————— OLAY SKIN ADVISOR
e SKinadvisor.olay.com
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SESSION 9

FACIAL EXPRESSION AND EMOTION DETECTION
FOR MOBILE

Jay Turcot - Director of Applied Al, Affectiva




What if technology
could identify
emotions as
humans can?

t) Affectiva —




Task: Facial expression recognition

= | _ _
« Multi-attribute classification (~20+ classes)

Upright, fixed-size, grayscale

« Fast enough to run on-device!

:) Affectiva



Emotion AI platform built on deep learning

£0 98
Sadness Joy Anger Surprise
Fear Disgust Contempt
el £
@ \@ ‘:Td
Age Ethnicity Gender
Input: Convolutional Neural Networks Output:
Labeled and unlabeled videos (+voice) 11 Facial expressions
data. Meta data. Latest training used Gender

1M+ images.

:) Affectiva W @affectiva



Speeding up deep learning models

Several approaches are used for speeding up models

Model Compression Model Quantization

Model Pruning

:) Affectiva W @affectiva



Lots of big filters are expensive!

Use smaller filters to condense information
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Look for redundancy in your layers

Small filters are faster... but can be highly correlated
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Match architecture to the problem

Avoid network architecture that is larger than needed

Problem Object detection (& classmcatlon) Facial action & attribute
classification

Details 1000 classes 20+ classes
~224x224 pixels, color ~100x100 pixels, grayscale
Objects with arbitrary scales / positions / Faces only, upright & registered
orientations

Architectures VGG'16 [1] - 16 layers (~30.9 GOP/image)
ResNet [2] - 152 layers (~22.6 GOP/image) ?
&

Others: Inception v4, E-Net
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Small networks still work very well..

a are sumciently small for on aovice proCessing

MFLOPs
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