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Motivation: Nicotine metabolizing enzymes and regulators

CYP2A6 transcription is regulated by CAR, NRF2, and HNF4A; CYP2AG6 activity is regulated by POR and oxidation state.
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Predicted molecular phenotypes from genotypes

Biosignature learning

Biosignature applications
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Predicting Molecular Phenotypes: Benefits

Define biosignatures

Genomic data availability
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Measuring molecular phenotypes may not be practical

Assess many predicted molecular phenotypes (e.g. TWAS; see Gusev et al.
2016)

e Path for biomarker development (id subgroups at risk, select optimal
treatments)
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NMR model: Generalized Linear Model

The conditional mean of Y;, the NMR of individual ¢, depends on P explanatory
variables through the link function g(-):

P P P
g(ps) = Bo+ Y B1Cij + > _ PaiGij + Y _ Bs; Zij,

j=1 j=1 j=1
Notation:

e (jj clinical factors

G;j genetic variants

(]

Z;j derived variables
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Br; regression coefficients
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Application: Genotypes — nicotine metabolism — smoking cessation

@ Nicotine metabolism influences:

o development of dependence (Cannon, 2016; Chenoweth, 2016)
o efficacy of treatment (Chen, 2014; Lerman, 2015)

@ Nicotine metabolism is influenced by:

o genetics (h? = 0.74 (Swan, 2009; Loukola, 2015))
e ancestry (Wang, 2015)
e age, sex, BMI, alcohol and cigarette consumption (Chenoweth, 2014)

@ Data: Laboratory studies of nicotine metabolism (Baurley, 2016)

e fixed dose nicotine administered, metabolites measured over time

o n =49 African Americans, n = 51 Asian Americans, n = 212 European
Americans

e genotyped DNA samples on the Smokescreen Genotyping Array
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Nicotine Metabolism GWAS (Baurley, et al. 2016)
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Joint Modeling

(]

NMR Application: N = 312, P = 5.9 million

o Given complex patterns of associations and P >> N, how do we get a
prediction model?

Reduce search space

o used literature and ontologies to select 11 genomic regions (3,752 SNPs) coding
for nicotine metabolic enzymes and transcription factors

Reduce model complexity

@ Machine learning (Penalized regression)
© Bayesian learning (ALPS)

James Baurley Predicting molecular phenotypes



A note on prediction error (Hastie, et al. 2009.)

e Assume Y = f(X) +¢€,e~ N(0,0()

o We estimate the model f(X) of f(X).

e The prediction error at z: Err(z) = E[(Y — f(2))?]
o Expand: Err(z) = (E[f - f)* + E[(f — E[f)*] + o2

Total Error

Variance

Error
Optimum Model Complexily

Model Complexi
plexity Fortmann-Roe 2012
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Approach 1: Machine learning: Penalized regression

Minimize a penalized residual sum of squares:

N p p
3= arggnin > wi—Bo—> B>+ A> 1Bl (1)
=1 j=1 =1

A controls model complexity
g = 0 is variable subset selection

g = 1 is the lasso (variable selection)

q = 2 is ridge regression (shrinkage)

Elastic net replaces the penalty term with

AY o aBi+(1—-a)lg) (2)
j=1
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Nicotine Metabolism Biosignature
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Question: Which model should we use for prediction?
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Answer: All of them

MAJOR HURRICANE IRMA (AL11)

EPS track guidance initialized at 1200 UTC, 06 September 2017

Current Intensity: 160 kt Current Basin: North Atlantic
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2 Gene Region Marginal Results

i*
*
* *
*
10- *
*
— *
*
3 LS T
S * ¥ % *
: *
s R
=g * T %
; o ¥
:

i
0- wf* ****5;

CYP2A6 CYP2A7 CYP2G1P CYP2B7P CYP2B6

41300000 41400000 41500000
Chr Position

James Baurley Predicting molecular pheno



Ensemble Selected SNPs, chr19q13.2
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Approach 2: Bayesian Learning
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Model diversity can improve prediction performance
Bayesian approaches
e account for uncertainty in model form and parameters
o allows inclusion of existing evidence into the model

e The posterior probability (weight) of a model given data is given by

p(D|M)p(M)
> mem P(D|m)p(m)

The marginal likelihood is actually marginalizing over the parameters in the
model.

p(M|D) =

(]

p(DIM) = /ﬁ p(D|B, M)p(8)ds

e Explore model space by Markov Chain Monte Carlo (MCMC) and
approximate the marginal likelihood.
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Constraining the model space using trees

o ALPS considers sets of SNPs whose effects are combined based on tree
structures A. See Baurley 2010, 2013.

@ The output of each node of the tree is a derived variable

e 0’s can represent logical ops. E.g., ADD, AND, OR’s

Zl = (01A1G1)+ (01.2G2)+(1_01,1 _01.2)G1G2
Zz = (92A1G3)+ (62,2G4)+(1_‘92.1 _62,2)GsG4

Z,= (6,,Z)+ (65,2,)+(1-6,,-0,,)Z,Z,

Y=/30 +[5123
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Model search

Figure 6.
Topology moves. From left to right, a node is removed deleting the edge to input 3. A new
node is then added connecting input 1 and 2.
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Nicotine metabolism: Pairwise SNP effects

o Visited >6M A’s from the 11 genomic regions of interest.
o Computed Bayes Factors, ratio of posterior to prior odds
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Nicotine Metabolism: Top ALPS Pathway Trees
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Conclusions

Genotypes —! Molecular Phenotype —2 Outcome

e Approach not limited to genomics (e.g., phenotype panels, IoT)

o Model diversity can boost prediction performances: Ensemble methods,
posterior predictive distribution

@ Deep learning algorithms can discover new derived variables (e.g. control
elements for gene expression)

o Refactoring is needed to GPU accelerate many statistical learning algorithms

o Invitation: Learn what’s under the hood!

o Offering 1-Week Short Course
o May 2018 at BINUS AI R&D Center (Jakarta, Indonesia)
e Contact Dr. Bens Pardamean: bpardamean@binus.edu
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