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“Four simple ways to fight diabetes: Go for reqular medical check-ups;
Exercise more; Watch your diet; and Cut down on soft drinks.”

- PM Lee Hsien Loong —
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Traditional Food Journal

¥ Tedious
¥ Non-efficient

¥ Non-effective

https://mww.womenshealthmag.com/sites/womenshealthmag.com/files/images/food-journal-1_0.jpg —_—
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Smart Food Logging

DASHBOARD

Register for Eat, Drink, Shop Healthy Challenge today!

< 17 October 2017
TODAY

1,800kcal burnt

@ >
21 2keal consumed

o>

Left to Consume: o

kcal

ADD FOOD / DRINKS

Have you updated your PROFILE yet?

HELP

DASHBOARD CHALLENGES REWARDS

DIET JOURNAL
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DIET JOURNAL

05 November 2015
TODAY

1,188 KCAL CONSUMED

1 Chilli crab
212 kcal

1 Allswell Less Sugar Water...

70 keal

DASHBOARD

CHALLENGES

1 Barbecued chicken wings
154 kcal
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1 Sambal kangkong
132 keal
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Food Image Recognition

* Visual Recognition
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Food Image Recognition

* Could be very challenging...

Singapore Tea or Teh

*Teh, tea with milk and sugar

*Teh-C, tea with evaporated milk

*Teh-C-kosong, tea with evaporated milk and no sugar
*Teh-0, tea with sugar only

*Teh-0O-kosong, plain tea without milk or sugar

*Teh tarik, the Malay tea

*Teh-halia, tea with ginger water

*Teh-bing, tea with ice, aka Teh-ice

*Teh-siu-dai, tea with less sugar

*Teh-gah-dai, tea with extra sweetened milk

http://supermerlion.com/wp-content/uploads/2010/04/madnesskopiteh.jpg
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Food Name Hierarchy

Teh O —

Teh O siu dai Teh O

Teh O kosong

Green tea

— Tea, no milk

Green tea ( no sugar)

Iced lemon tea

Iced lemon tea
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Visual Recognition

* Classical Computer Vision Pipeline

Trainable

Classifier ) Mee siam
(ML) Mee Goreng

Deep Learning SN Mee siam
Mee Goreng
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Deep Convolutional Neural Networks (CNN)

* Convolutional Neural Networks (CNN)
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LeNet [LeCun et a. 1998]
School of ]X( SMU

SINGAPORE MANAGEMENT

Information Systems Photos taken form https://www.mathworks.com/discovery/convolutional-neural-network.html UNIVERSITY

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]



Deep CNN for Visual Recognition

e Revolution of Depth
* From AlexNet (8-layers) in 2012

[ Krizhevsky et al. 2012 ]

‘ 152 layers
. “ )
IMAGENET \ 22|E'1FEI’5 H lﬂlavers 1 I I

3 57 I o I 8 layers ‘ [ 8 layers ‘ shallow

ILSVRC'15  ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

School of

Information Systems ImageNet Classification top-5 error (%)
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Why Deep Learning?

A

1
Accuracy

Deep Learning

Machine
Learning

Traditional Learning

v

Small data Data Size Big data
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* Deep Learning on GPU Clusters
 DGX-1: NVIDIA Pascal™-powered Tesla® P100

* Performance equal to 250 conventional servers.

NVIDIA DGX-1
Al Suﬁercomputer

|

NVIDIA DGX-1

WORLD’S FIRST
DEEP LEARNING SUPERCOMPUTER

NVIDIA DGEX-1
170TF | “250 servers in-a-box” | nvidia.com/dgx1 | FIU |LEI:-LEI|I:::2-'_;|
@ $129,000
K7

0 10 200 liE AIES 50X S0 T B

Relative Performance [Based on Time to Train)

Mate; Caffe benchrmark with &lexMet, training 1. 2BM images with 0 epochs | CPU server
uses 2x Keon EE-2E57 w3 CPUs.
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SGFOOD Data Statistics

SGFood724 Dataset

# total images 361,676 7,240 36,200
# Image per class ~500 10 50

#Food Items: 1038 #Visual Food: 724  #Food Category: 158

4000

3000 5
2000 2
1000 g

Histogram of #visual foods (724 visual food classes)
School of &‘(\ SMU
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FoodAl: Open API Service

http:/Awww.foodai.org

FOODAI sl

00 Al N
Smart Food Recognition with the state- ¢
of-the-art Visual Recognition technology

Try our Demo

FOODA/™ Demo.

out our demo below or visit our develope:
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Frontend

FOOD M Demo
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Backend

Apache Thrift ™

MODEL
INFERENCE
ENGINE

API
Service

DATABASE

‘mongoDB_m

e i — — — — — — — — — ——————————————————

o

Offline

Caffe ¥

MODEL TensorFlow

TRAINING

NVIDIA® DGX-1™
Deep Learning System

EXTERNAL DATA
COLLECTION

ATl @ python
SYSTEM &1 ’ sk

HTML [CXX J3
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* How to train a good CNN model?
* How to deal with new food?
* How the labeled data size affects the accuracy?
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Model Training

* A Family of CNN models for visual recognition

ImageNet 1000 classes, 1.2 million images for training ; 3 Inception-v4
80 1 - 80 4 =2 ; 1
Inception-v3 ° ResNet-152
ResNet- 50 ; ' VGG-16 | VGG-19
L e Siiseaaassnis o 6 OB N B = “ResNet- S0 SR G G
ResNet-34 : :
£ 70+ = 70{ M ResNet-18
g 9 .} 14
© ® GoogleNet
3 3 ENet |
g 65 1 © 65 1 :
Fg',l g © BN-NIN ‘ 1 ;
gl - 1 SRE—— et o7 PO [N (S - 35M - 65M  95M - 125M  155M
BN-AlexNet
55 1 55 “AlexNet
e 9 O .o <. 5 N 00 s 10 15 20 2;5 30 35 40
NS §\8 N \\\e v\Q ‘\, >y 6,’\ “3 AD (\\l 0\1 ¢
e aet \\\e 167G §\ N GY e\. “o \0 Operations [G-Ops]
P%V\ S 600 ?\e’ e ng’ “ “ e®

“An Analysis of Deep Neural Network Models for Practical Applications” .
< ehool of Alfredo Canziani, Adam Paszke, Eugenio Culurciello Published 2016 in ArXiv g’é SMU
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* CNN Models
* GoogleNet
* ResNet: 18, 50, 101, 152

* Settings

* Toolbox: Caffe & TensorFelow
Finetuned from ImageNet pretrained models
Batch Size: From 16 to 128
Optimizer: SGD with momentum/RMS Prop/Adam
Learning rate: Fixed/multi-step/exponential decay
Dropout/Batch Normalizations

NNNNNNNNNNNNNNNNNNNNNNN



724 visual food classes, 361,676 images for training, ~500 images per class

GoogleNet 71.5 91.0
ResNet-18 71.2 91.5
ResNet-50 76.1 93.3
ResNet-101 73.2 91.9
ResNet-152 74.7 92.7

1000 object classes, 1.2 million images for training, 1200 images per class

Models (IMAGENET) Top-1 Accuracy (%) Top-5 Accuracy (%)

ResNet-50 77.1 93.3
ResNet-101 78.2 93.9
ResNet-152 78.6 94.3

IMAGE
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Food Saliency Map
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How to handle NEW food?

* Too many possible food items in the market
* Only consider popular food for majority of users

New food New food Model Update FoodAl

Discovery

image Re-training Inference
annotation with new food Engine

* New food has few images available at the beginning
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What if only 10x less amount of labeled data is
available to train an CNN model?
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Training on 10x less [abeled data

M ResNet-50 (10%) W ResNet-50(10%)+augmentation m ResNet-50 (100%)
TOP-1 ACCURACY TOP-5 ACCURACY
School of ]; éMMHAGEMENT
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Case Studies: Food logging photos from users
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Mobile App

Powered by

FOOD

FOODA/ ™ Demo

Try out our demo below or visit our developer portal for o

ur API services.

Chilli Crab

»
BB Black Pepper Crab
nknown

2/2016/02/Chilli-Crab1.jpg

Choose a file
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Case Studies: Easy Cases
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Case Studies: Hard Cases Large inter-class similarity (e.g., drinks)
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Case Studies: Hard Cases Large inter-class similarity (e.g., drinks)

Instant Coffee Teh C/ Teh

Plain Porridge Soya milk
gl v Ty
r =
. 7
School of ]; SMU
Information Systems \ SINGAPORE MANAGEMENT



Case Studies: Hard Cases Large inter-class similarity (e.g., drinks)
Instant Coffee
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Case Studies: Hard Cases

School of
Information Systems

Large intra-class diversity
(e.g., Economy rice)




Case Studies: Hard Cases Incomplete Food
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Case Studies: Hard Cases

Non Food

Strawberries
Fraises

PRODUCT OF USA +
N T 16121 POIDS

Total ¢

St Towl
Rounced Ast -

i

4,
S
2

ML LA
"
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Poorly taken photos (illumination,
rotation, occlusion, etc)

Case Studies: Hard Cases




Case Studies: Hard Cases  Multiple food items
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Case Studies: Hard Cases unknown food / food not in our list

UNIVERSITY
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How to build a more sustainable solution?
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Crowdsourcing

Combined with human wisdom

Better Learning
Go beyond supervised CNN
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Thank You!

http://www.foodai.org
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