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Reinforcement Learning 95 e

* An agent learns to perform actions that maximize long term rewards
* Discovers solutions through interaction with the environment

Environment

Reward

* Different from supervised learning which a lot of deep learning is used for
* Deep learning can still be applied for RL, but target value changes

* RLis a powerful technique, but is usually computationally expensive and
may be impractical since it requires many interactions with the environment
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ARTICLE

dol:10.1038/nature24270 19 Oct 2017

Mastering the game of Go without
human knowledge

David Silver'*, Julian Schrittwieser'®, Karen Simonyan'®, loannis Antonoglou!, Aja Huang!, Arthur Guez!,
Thomas Hubert!, Luca: :1_k<:r'. Matthew Lai', Adrian Bolton!, Yutian Chen!, Timothy Lillicrap!, Fan Hui', Laurent Sifre!,
George van den Driessche!, Thore Graepel! & Demis Hassabis!

A long-standing goal of artificial inrelligence is an algorithm that learns, tabula rasa, superhuman proficiency in
challenging domains. Recently, AlphaGo became the first program to defeat a world champion in the game of Go. The
tree search in AlphaGo evaluated positions and selected moves using deep neural networks. These neural networks were
trained by supervised learning from human expert moves, and by reinforcement learning from self-play. Here we introduce
an algorithm based solely on reinforcement learning, without human data, guidance or domain knowledge beyond game
rules. AlphaGo becomes its own teacher: a neural network is trained to predict AlphaGo’s own move selections and also
the winner of AlphaGo’s games. This neural network improves the strength of the tree search, resulting in higher quality
move selection and stronger self-play in the next iteration. Starting tabula rasa, our new program AlphaGo Zero achieved
superhuman performance, winning 100 -0 against the previously published, champion- defeating AlphaGo.

Much progress towards artificial intelligence has been made using  trained solely by self-play reinforcement learning, starting from ran-
supervised learning systems that are trained to replicate the decisions  dom play, without any supervision or use of human data. Second, it
of human experts'™*. However, expert data sets are often expensive,  uses only the black and white stones from the board as input features.
unreliable or simply unavailable. Even when reliable data sets are  Third, it uses a single neural network, rather than separate policy and
available, they may impose a ceiling on the performance of systems  value networks. Finally, it uses a simpler tree search that relies upon
trained in this manner. By contrast, reinforcement learning systems  this single neural network to evaluate positions and sample moves,
are trained from their own experience, in principle allowing them to  without performing any Monte Carlo rollouts. To achieve these results,
exceed human capabilities, and to operate in domains where human  we introduce a new reinforcement learning algorithm that incorporates
expertise is lacking. Recently, there has been rapid progress towards this  lookahead search inside the training loop, resulting in rapid improve-
goal, using deep neural networks trained by reinforcement learning.  ment and precise and stable learning. Further technical differences in
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Human-level Control in Atari 2600 Games
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Engineering Systems kel

Complex systems
* behaviour described by differential equations
* may have a number of operational modes

* Real-time control is required
* Need to operate reliably and safely

Examples
* vehicles, robots, manufacturing and communication and computing systems
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Execution Time:
CPU vs GPU on OpenAl Gym Tasks

CPU: Intel Core i7-3770 CPU 3.40 GHz (4 cores, GB RAM) (power consumption: 47-100 W)
GPU: NVIDIA GeForce GTX 1060 (1,280 cores, 6 GB) (~S$350; power consumption: 120 W)
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Training parameters:

# Episodes: 1,000

# Iterations in each Episode: 500
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* Next Generation Distributed Mobile Computing:
5G - loT - Fog/Edge Computing

* Learning Skills on a Robot Manipulator

NVIDIA Al Conference 24 Oct 2017 CK Tham - Accelerating RL in Engineering Systems 7

Computation Offloading in an Ad-hoc Mobile Cloud NUS
(5G - loT - Fog Computing operation scenario) '
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* Consider an ad-hoc mobile cloud where a mobile user can offload its computation tasks to nearby
mobile cloudlets (e.g., smart phones and vehicles) with available computation resources

* Computation tasks are offloaded to the cloudlets via a device-to-device (D2D) communication-
enabled cellular network

* Deep reinforcement learning (DRL) is applied for the user to learn an optimal offloading policy with
the objective of maximizing the user’s utility, while minimizing the required payment, energy
consumption, processing delay and task loss

DV Le, and C K Tham, A Deep Reinforcement Learning (DRL)-based Offloading Scheme in Ad-hoc Mobile Clouds, submitted to IEEE PerCom 2018
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DQN-based Offloading Decision Learning
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Deep Q-network

* The user maintains a neural network to estimate Q-values for all pairs of states and actions

* Inthe deep Q-network, the experience replay and target network techniques are used to
train the neural network at every learning step

* The e-greedy policy is adopted to select an action for each state based on the estimated
Q-values
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Offloading Results

Achieves good payment, energy consumption,

processing delay and task loss performance GPU: NVIDIA GeForce GTX 1060 (1,280 cores, 6 GB)
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Training parameters:

# Episodes: 100

# Iterations in each Episode: 5,000

epsilon is decreased from 0.99 to 0.1 with decay rate 0.9999
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CPU: Intel Core i7-3770 CPU 3.40 GHz (4 cores, 16 GB RAM)
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GTC 2017: NVIDIA Isaac Robot Simulator (NVIDIA keynote part 12)

ANNOUNCING ISAAC ROBOT SIMULATOR
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Robot Manipulator Control %

* Goal: move end-effector from any starting position to the destination
position without colliding with any obstacle

* Generate torque commands to drive each link

* A dynamical system whose model is governed by differential
equations

DESTINATION
"
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Train DQN @
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random location

Simulate (arms
move)

Reach/collision/100 steps
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Robot Manipulator Results

No. of Successes (torque commands)
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Average No. Steps per Trial (torque commands)
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M‘ CPU: Intel Core i7-6700, 3.40 GHz (4 cores, 16 GB RAM)

GPU: NVIDIA GeForce GTX 1060 (1,280 cores, 6 GB)
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Is this task too difficult for
Reinforcement Learning?

DESTINATION
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Position of
end-effector




No. It can be solved ... NUS
using a different function approximator ~

Faster
Higher resolution
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Conclusion

* Reinforcement Learning is capable of solving engineering tasks

* Hardware accelerators like GPUs* and algorithmic improvements
have enabled RL to be accelerated in time and reduce the number of
iterations or interactions with the environment that are required

* However, direct application of deep learning techniques may not yield
the best results

* Further research into various aspects is needed to enhance RL’s ability
to better solve engineering problems  *
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Thank You

Questions?

Contact: Tham Chen Khong
E-mail: eletck@nus.edu.sg

ﬁ National University
of Singapore




