
Efficient population based hyperparameter
scheduling for medical image segmentation

No Author Given

No Institute Given

Abstract. The training hyperparameters (learning rate, augmentation
policies, e.t.c) are key factors affecting the performance of deep networks
for medical image segmentation. Manual or automatic hyperparameter
optimization (HPO) is used to improve the performance. However, man-
ual tuning is infeasible for a large number of parameters, and existing
automatic HPO methods like Bayesian optimization are extremely time
consuming. Moreover, they can only find a fixed set of hyperparameters.
Population based training (PBT) has shown its ability to find dynamic
hyperparameters and has fast search speed by using parallel training pro-
cesses. However, it is still expensive for large 3D medical image datasets
with limited GPUs, and the performance lower bound is unknown. In
this paper, we focus on improving the network performance using hyper-
parameter scheduling via PBT with limited computation cost. The core
idea is to train the network with a default setting from prior knowledge,
and finetune using PBT based hyperparameter scheduling. Our method
can achieve 1% ∼ 3% performance improvements over default setting
while only taking 3% ∼ 10% computation cost of training from scratch
using PBT.

Keywords: Hyperparameter optimization, Population based training, Bayesian
optimization, Medical image segmentation

1 Introduction

The success of deep networks relies heavily on the correct setting of training
hyperparameters. Hyperparameters like learning rate, choice of optimizers, and
augmentation policies can greatly affect the performance of 3D medical image
segmentation networks. This has led to the automatic hyperparameter optimiza-
tion (HPO) algorithms. The basic algorithms include random search [3], grid
search, and Bayesian optimization [8, 18, 19]. Random search trains the deep net-
work with the randomly sampled hyperparameters, which is inefficient. Bayesian
optimization samples the hyperparameters based on a Bayesian model, which is
updated during searching. For medical imaging, Tran et al. [20] applied bayesian
optimization (Gaussian Processes) on 2D echocardiography segmentation and
trained 100 jobs. Yang et al. [22] and Nath et al. [14] used reinforcement learning
and searched on 50 GPUs for 2 days. Hoopes et al. [7] proposed a specific hyper-
network to generate hyperparameters for registration tasks. The core of those

2 No Author Given

methods are the same: explore and interpolate the manifold of hyperparameter θ
and deep network performance p , as shown in Fig. 1 (a). The major drawback is
that the evaluation for each sampled hyperparameter requires expensive deep
network retraining. Many works focus on reducing the evaluation cost by early
stopping the network retraining [4, 11,12]. For example, Bayesian optimization
hyperband (BOHB) [4] samples hyperparameters using a Tree Parzen estimators
(TPE) [2], and the hyperparameters with good performances are allocated more
training budget for more accurate evaluations (Hyperband [12]). However, if the
network requires long training epochs to converge, aggressive early stopping may
cause inaccurate evaluation. Moreover, the searched hyperparameters are fixed
for the network training, which is sub-optimal.

(a) (b)

Fig. 1: (a) The hyperparameters θ and best validation performances p of the
network trained with θ. Each dashed line represents a sample of hyperparameters.
(b) The manifold when considering the deep network parameters (weights, w). The
green arrow represents the PBT from scratch, and the blue dashed line represents
training with a default setting. The blue dots are the validation checkpoints. The
blue arrows represent PBT searching starting from validation checkpoints.

Population based training (PBT) [10,15] solves the HPO problems by intro-
ducing parallel workers and evolutionary strategies. Each parallel training process
(worker) trains the network with different hyperparameters for a step (e.g. 1
epoch). The workers with top performances keep the hyperparameters unchanged.
The rest workers shall load the hyperparameters and network weights from the
top performing ones (exploit), then continue training with mutated hyperparam-
eters (explore). All the workers will continue and repeat the process. If a deep
network needs to be trained for N epochs with certain hyperparameters, the total
training epochs for PBT are also N if ideally without computation resource limit,
since the workers are running in parallel. Meanwhile, the searched hyperparame-
ters are dynamic across training steps. This method is suitable for training large
scale deep networks and shows superior performance in reinforcement learning.
However, the computation resource is limited in real practice (e.g. a station with

Efficient population based hyperparameter scheduling 3

8 GPUs), and data parallel is usually used to increase the batch size for 3D
medical images (training one network using all 8 GPUs, and no GPUs left for
parallel workers). The training cost becomes N ×W , where W is the number of
PBT workers and needs to be large enough to reach certain performance. Can we
reduce N and adapt the early stopping methods for evaluation mentioned above?
PBT evaluates different hyperparameters every single step (e.g. 1 epoch) and
already uses "early stopping". To understand the problem, we plot the network
performance manifold related to both the hyperparameters θ and deep network
weights w (simulated in 2D for intuitive explanation), as shown in Fig. 1 (b).
Fig. 1 (a) is a sub-space of Fig. 1 (b), where the deep network performance (the
y axis) is the maximum performance of all w given a θ. The blue dashed line
represents the training of w using certain θ and each blue dot means a validation
checkpoint. The green arrow represents the best worker in each step for the PBT
algorithm. The large training cost comes from the large number of steps needed
to converge from scratch. Meanwhile, the green arrow explores the manifold
from random initialled states without any convergence guarantee [23], thus the
performance lower bound cannot be estimated beforehand.

The key to reduce training costs is to reduce the steps the network needs to
converge from scratch. However, the "No Free Lunch Theorem" [17, 21] suggests
that no optimization method offers a "shortcut" unless using prior knowledge
about the problem. We observed that a major difference between medical image
and natural image analysis tasks is that the targets (brain, lung, e.t.c) and
modalities (MRI, CT, e.t.c) for medical images are limited, and the expert
knowledge might be obtained and transferred. For example, nn-UNet [9] shows
that hyperparameters generated by an expert understanding of the medical data
can achieve outstanding performance on most medical segmentation challenges.
In many scenarios, we already have a good set of hyperparameters for a task,
and what we really need is an efficient and robust method to further improve
the performance (e.g. compete in challenges). If we train the network using the
hyperparameters from expert knowledge (denoted as the default setting) and w is
updated along the dotted blue line in Fig. 1 (b), we can start from the validation
checkpoints and use PBT for finetuning (blue arrows). This greatly accelerates
the training and the results is at least as good as the default setting. Based
on this observation, we propose a fast performance improvement method using
PBT and finetuning. The proposed method can be applied to any given task and
achieve significant performance improvement with limited computation cost. As
far as we know, our method is (1) the first work applying PBT for large scale 3D
medical image segmentation, and can (2) reduce training cost to 3% ∼ 10% of the
original PBT and makes it computationally feasible, (3) the performance lower
bound is bounded by the default setting performance, thus making the whole
process controllable. (4) The mutation step (explore the hyperparameter space)
in original PBT relies on random heuristics and lacks theoretical guarantees [15],
and we implemented the TPE based Bayesian sampler which is theoretically
sound and does not need a heuristic exploring algorithm as in [6,10]. TPE model
has shown its efficacy and simplicity as used by BOHB [4], so we use TPE instead

4 No Author Given

of the Gaussian process as used in [15]. Besides, we implemented the PBT with
sequential workers, where each worker uses all GPUs for data parallel and is
more suitable for 3D medical imaging tasks. We performed experiments on four
datasets from the MSD challenge [1] using two network structures. The results
show the efficacy and simplicity of our proposed method.

2 Method

Our method can be added to any training pipeline. Conventionally, given default
hyperparameters, the network is trained for N epochs and validated for V
times (network weights are saved as checkpoints). The checkpoint with the best
validation accuracy is deployed. Our method tries to improve the performance
of the network from this training pipeline, and we have two steps: 1) select
checkpoints to finetune 2) apply PBT to the selected checkpoints.
Checkpoint Selection
If only finetune from the checkpoint with the highest validation accuracy, the
final network can only reach the local maximum around that point. We can
start from multiple checkpoints to explore more local maximums, as shown in
Fig. 1 (b). If the checkpoint has low validation accuracy, the checkpoint may be
located at a bad position, and explore around is a waste of computation. If two
checkpoints are too close, they may be located around the same local maximum,
and the exploration is redundant. Given checkpoints ce1 , ce2 , · · · , ceV validated
at epoch e1, e2, · · · , eV with performances pe1 , pe2 , · · · , peV , we select a list of
checkpoints S = {cei |pei > 0.95 ∗ pem} with good enough performances, where
pem = max(pe1 , pe2 , · · · , peV). We chose three checkpoints cei , cej , cek , ei < ej <
ek from S, which satisfies

max
i,j,k

(min(ej − ei, ek − ej)) ∀i, j, k ∈ S,m ∈ {i, j, k}. (1)

The epoch differences ej − ei and ek − ej is used as distances between the
checkpoints, and we want to keep checkpoints as far as possible, so we maximize
the minimum value of these two distances. Meanwhile, we make sure the best
checkpoint cem is among these three selected checkpoints (m ∈ {i, j, k}). If several
sets of {i, j, k} have the same value in Eq. 1, the set with maxi,j,k(max(ej −
ei, ek − ej)) is selected.
Population Based Training with TPE
We run PBT starting from cei , cej , cek . The algorithm is shown in Alg. 1. We
use W = 27 workers, and each worker runs sequentially. In the first step, the
first worker loads the checkpoint cei (the same procedure for cej and cek) and
randomly samples hyperparameters h from configuration space H. The network Φ
is trained for B = 1 epoch with h. The validation result and h will be saved into
a set R, and a TPE model will be fitted if the elements in R is large enough (the
details of TPE fitting and sampling can be found in BOHB1 [4]). All the following
workers in this step will load checkpoint cei . If the TPE model is not fitted
1 https://github.com/automl/HpBandSter

https://github.com/automl/HpBandSter

Efficient population based hyperparameter scheduling 5

or a random number p ∼ Uniform(0, 1) is smaller than σ = 0.3, h is randomly
sampled; otherwise the TPE model is used. After all workers finish training and
validation in the step, the top η = 3 workers ranked by validation accuracies will
not change their hyperparameters or load weights from other workers. The rest
W−η workers will randomly load checkpoints from these top workers and sample
new h. Then all workers will continue to the next step for in total S = 50 steps.

Algorithm 1 Population Based Training for Finutuning
Input: checkpoints cei , cej , cek, network Φ, hyperparameter search

space H, number of search steps S and epochs B in each step,
number of workers W, number of top workers η, random rate σ

1: for c ∈ {cei , cej , cek} do
2: Initialize TPE model M = ∅, performance record R = ∅
3: Initialize top workers set Tw = ∅, checkpoints set Cw = ∅
4: for s in {1, 2, · · · ,S} do
5: Initialize performance record SR = ∅
6: for w in {1, 2, · · · ,W} do
7: if w /∈ Tw then
8: if M = ∅ or p ∼ Uniform(0, 1) < σ then
9: Sample random hyperparameters h from H

10: else
11: Sample h using M
12: if Cw ̸= ∅ then
13: Load a random checkpoint from Cw into Φ
14: else
15: Load checkpoint c into Φ
16: else
17: Use the hyperparameters h of worker w
18: Load checkpoint that corresponds to w from Cw

19: Train Φ for B epochs with hyperparameters h
20: Get validation performance pw of Φ and save checkpoints
21: SR = SR ∪ {pw}, R = R ∪ {(pw, h)}
22: if |R|0 > Minimum samples needed for fitting TPE then
23: Fit new TPE model M using R
24: Find η top workers, Tw = {w|w ∈ top η workers in SR}
25: Define set Cw= {most recent checkpoint of w|w ∈ Tw}

3 Experiments

Datasets and Default Setting Four datasets from the MSD challenge [1] are
used: Task01 Brain Tumour (484 multi-modal MR images), Task05 Prostate (32
MR/ADC images), Task06 Lung Tumour (64 CT images), and Task07 Pan-
creas Tumour (282 CT images). We train the standard U-Net [16] and the
SegResNet [13] (1st in Brats18 challenge) with a sophisticated training pipeline
with hyperparameters from DiNTS [5]2 (2st place in MSD live challenge). Each
2 https://github.com/Project-MONAI/research-contributions/tree/master/
DiNTS

https://github.com/Project-MONAI/research-contributions/tree/master/DiNTS
https://github.com/Project-MONAI/research-contributions/tree/master/DiNTS

6 No Author Given

Table 1: Hyperparamter search space H. The values in "Range" are the choices
for "Categorical", and are the min and max values for others. {Aug} contains
nine random augmentation probabilities. Details about augmentations and losses
can be found at https://monai.io/ and DiNTS2.
Parameter Learning rate Optimizer Weight Decay Loss Function Background Crop Ratio {Aug}
Distribution LogUniform Categorical LogUniform Categorical Uniform Uniform

Range [1e-4, 0.2] [Sgd, Adam] [1e-5, 1e-1]
[DiceLoss,

DiceCELoss,
DiceFocalLoss]

[0.1, 0.9] [0, 1]

dataset is equally split into five folds, and the network is trained on the first
four (5000 epochs for Task05, Task06, and 1500 epochs for Task01, Task07) and
validated (every 100 epochs) on the last fold. Our method tries to find the optimal
hyperparameter schedule to fit data, and we report validation results.
Search Setting The hyperparameter search space H is shown in Table. 1. H
defines how h is sampled using random sample and TPE model. We search 14
parameters: learning rate, optimizer, weight decay, loss function, background
crop ratio (background patches sampling ratio), and 9 random augmentations
probabilities. PBT starts from three checkpoints, and run with 27 workers (W=27)
for S=50 steps (B=1, one epoch per step) using 8 NVIDIA V100 GPU.
PBT Finetuning Results The validation curve (average Dice score for all
segmentation classes) of the U-Net and SegResNet on the four datasets are
shown in Fig. 3. We show the best PBT validation score among W=27 workers
in each step. The training using the default setting validates every 100 epochs,
while PBT validates every 1 epoch for 50 epochs. We resume the default setting
training (including optimizer states) from these three checkpoints and validates
every epoch for 50 epochs ("default-continue"). The best Dice score of PBT
finetuning in all the steps and the Dice score of the default setting are also listed
in Fig. 3. We can see that PBT finetuning can achieve 1% ∼ 3% Dice improvement
over the default setting rapidly for most experiments, while the "default-continue"
follows the trend of the default setting validation curve. Intuitively, the "default-
continue" explores along the blue dashed line (y axis), while PBT can explore
both x and y axes thus can reach better performance, as shown in Fig. 1 (b).
Comparison with PBT from scratch We also show a comparison with PBT
from scratch. The validation curve of PBT from scratch for Task05 Prostate and
Task06 Lung Tumour using U-Net are shown in Fig. 2 (total 5000 epochs, S=100,
B=50, W=9 and 27 for Task05, W=9 only for Task06 due to the training cost).
We can see that the PBT performance is influenced by the number of workers.
PBT from scratch shows faster convergence and achieves better results with more
workers (W=27) than the default setting. However, it is worse than the default
setting if the worker number is small (W=9). This is also observed on the Task01
Brain Tumour (PBT W=9 Dice:0.68, default Dice:0.73) and Task07 Pancreas
Tumour (PBT W=9 Dice:0.49 default Dice:0.53, details are in the supplementary
material). Our PBT finetuning (W=27) greatly reduces the performance gap
between default setting and PBT from scratch (W=27). However, our method

https://monai.io/

Efficient population based hyperparameter scheduling 7

is also influenced by the worker number. A smaller worker number (W=9) will
provide less improvement, but is still better than PBT from scratch (W=9) and
the default setting. Compared with our PBT finetuning, PBT training from
scratch can potentially find better local performance maximums than searching
around default settings, however, the major obstacle is the computation cost. For
large datasets like Task01 and Task07, training with default setting takes 9 hours
on an 8 GPU station (1500 epochs), and a 27 worker PBT process will cost ten
days (27× 1500 epochs), while PBT finetuning only takes 20 hours (3× 27× 50
epochs) and achieves 10 times speedup. For Task05 and Task06, the default
setting takes 0.67 and 9 hours respectively for 5000 epochs, PBT finetuning
achieves 33 times speedup (3× 27× 50 epochs) compared to PBT (W=27) from
scratch (27×5000 epochs).

Fig. 2: Validation curve of PBT training from scratch and our PBT finetuning
on prostate and lung datasets, with varying worker number W=9 and W=27.

4 Discussion and Conclusion

In this paper, we proposed an efficient HPO method using PBT. The method
is simple, robust, and widely applicable to most training pipelines for a quick
performance improvement. Our experiments show a 1% ∼ 3% performance gain
with 10 ∼ 33 times acceleration. PBT from scratch does not need any default
setting and can potentially find much better results, but the performance is
sensitive to settings like worker number, and the lower bound is unknown. More
importantly, the training cost for large datasets is too expensive with limited
GPUs (e.g. a typical 8 GPU station). Our method utilizes the prior knowledge to
locate good starting points for PBT, and the performance lower bound is usually
bounded by the starting points. The advantage is also its limitation, the short
search time makes it hard to find a much better result than its starting point.
Future work will include applying the methods to larger networks like DiNTS [5]
and nn-UNet [9] and obtaining challenge leaderboard results.

8 No Author Given

Fig. 3: Validation curve (Dice score, y-axis) of default hyperparameters ("default"),
PBT finetuning ("pbt best worker finetune", results of the best worker in each
step), and continue training using default hyperparameters ("default-continue").
x-axis is the training epoch number. The best Dice score of PBT finetuning in all
the steps and the Dice score of the default training are listed besides the zoomed
in windows for each checkpoint.

Efficient population based hyperparameter scheduling 9

References

1. Antonelli, M., Reinke, A., Bakas, S., Farahani, K., Landman, B.A., Litjens, G.,
Menze, B., Ronneberger, O., Summers, R.M., van Ginneken, B., et al.: The medical
segmentation decathlon. arXiv preprint arXiv:2106.05735 (2021)

2. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter
optimization. Advances in Neural Information Processing Systems 24 (2011)

3. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Journal
of Machine Learning Research 13(2) (2012)

4. Falkner, S., Klein, A., Hutter, F.: Bohb: Robust and efficient hyperparameter
optimization at scale. In: International Conference on Machine Learning. pp. 1437–
1446. PMLR (2018)

5. He, Y., Yang, D., Roth, H., Zhao, C., Xu, D.: Dints: Differentiable neural net-
work topology search for 3d medical image segmentation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5841–5850
(2021)

6. Ho, D., Liang, E., Chen, X., Stoica, I., Abbeel, P.: Population based augmentation:
Efficient learning of augmentation policy schedules. In: International Conference on
Machine Learning. pp. 2731–2741. PMLR (2019)

7. Hoopes, A., Hoffmann, M., Fischl, B., Guttag, J., Dalca, A.V.: Hypermorph: amor-
tized hyperparameter learning for image registration. In: International Conference
on Information Processing in Medical Imaging. pp. 3–17. Springer (2021)

8. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: International Conference on Learning and
Intelligent Optimization. pp. 507–523. Springer (2011)

9. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a
self-configuring method for deep learning-based biomedical image segmentation.
Nature Methods 18(2), 203–211 (2021)

10. Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W.M., Donahue, J., Razavi,
A., Vinyals, O., Green, T., Dunning, I., Simonyan, K., et al.: Population based
training of neural networks. arXiv preprint arXiv:1711.09846 (2017)

11. Jamieson, K., Talwalkar, A.: Non-stochastic best arm identification and hyperpa-
rameter optimization. In: Artificial Intelligence and Statistics. pp. 240–248. PMLR
(2016)

12. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband:
A novel bandit-based approach to hyperparameter optimization. The Journal of
Machine Learning Research 18(1), 6765–6816 (2017)

13. Myronenko, A.: 3d mri brain tumor segmentation using autoencoder regularization.
In: MICCAI Brainlesion Workshop. pp. 311–320. Springer (2018)

14. Nath, V., Yang, D., Hatamizadeh, A., Abidin, A.A., Myronenko, A., Roth, H.R., Xu,
D.: The power of proxy data and proxy networks for hyper-parameter optimization
in medical image segmentation. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. pp. 456–465. Springer (2021)

15. Parker-Holder, J., Nguyen, V., Roberts, S.J.: Provably efficient online hyperparam-
eter optimization with population-based bandits. Advances in Neural Information
Processing Systems 33, 17200–17211 (2020)

16. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical
image segmentation. In: International Conference on Medical Image Computing
and Computer-Assisted Intervention. pp. 234–241. Springer (2015)

10 No Author Given

17. Schaffer, C.: A conservation law for generalization performance. In: Machine Learn-
ing Proceedings, pp. 259–265. Elsevier (1994)

18. Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Patwary,
M., Prabhat, M., Adams, R.: Scalable bayesian optimization using deep neural
networks. In: International Conference on Machine Learning. pp. 2171–2180. PMLR
(2015)

19. Srinivas, N., Krause, A., Kakade, S., Seeger, M.: Gaussian process optimization in
the bandit detting: no tegret and experimental design. In: Proceedings of the 27th
International Conference on Machine Learning. No. CONF, Omnipress (2010)

20. Tran, T., Stough, J.V., Zhang, X., Haggerty, C.M.: Bayesian optimization of
2d echocardiography ssgmentation. In: International Symposium on Biomedical
Imaging (ISBI). pp. 1007–1011. IEEE (2021)

21. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation 1(1), 67–82 (1997)

22. Yang, D., Roth, H., Xu, Z., Milletari, F., Zhang, L., Xu, D.: Searching learn-
ing strategy with reinforcement learning for 3d medical image segmentation. In:
International Conference on Medical Image Computing and Computer-Assisted
Intervention. pp. 3–11. Springer (2019)

23. Yu, T., Zhu, H.: Hyper-parameter optimization: A review of algorithms and appli-
cations. arXiv preprint arXiv:2003.05689 (2020)

	Efficient population based hyperparameter scheduling for medical image segmentation

