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Abstract. Rheumatic heart disease (RHD) is a common medical condition in 

children in which acute rheumatic fever causes permanent damage to the heart 

valves, thus impairing the heart’s ability to pump blood. Doppler echocardiog-

raphy is a popular diagnostic tool used in the detection of RHD. However, the 

execution of this assessment requires the work of skilled physicians, which poses 

a problem of accessibility, especially in low-income countries with limited access 

to clinical experts. This paper presents a novel, automated, deep learning-based 

method to detect RHD using color Doppler echocardiography clips. We first ho-

mogenize the analysis of ungated echocardiograms by identifying two acquisition 

views (parasternal and apical), followed by extracting the left atrium regions dur-

ing ventricular systole. Then, we apply a model ensemble of multi-view 3D con-

volutional neural networks and a multi-view Transformer to detect RHD. This 

model allows our analysis to benefit from the inclusion of spatiotemporal infor-

mation and uses an attention mechanism to identify the relevant temporal frames 

for RHD detection, thus improving the ability to accurately detect RHD. The per-

formance of this method was assessed using 2,136 color Doppler echocardiog-

raphy clips acquired at the point of care of 591 children in low-resource settings, 

showing an average accuracy of 0.78, sensitivity of 0.81, and specificity of 0.74. 

These results are similar to RHD detection conducted by expert clinicians and 

superior to the state-of-the-art approach. Our novel model thus has the potential 

to improve RHD detection in patients with limited access to clinical experts. 

Keywords: Classification, color Doppler echocardiography, deep learning, 

multi-view learning, rheumatic heart disease.  

1 Introduction  

Rheumatic heart disease (RHD), a consequence of heart valve impairment caused by 

acute rheumatic fever, is a common treatable condition in young children; however, its 

late detection and treatment can lead to heart failure or death, making it a big concern 

in low- and middle-income countries with limited access to specialized healthcare fa-

cilities [1], [2]. Color Doppler echocardiography is a popular test for RHD screening in 

children due to its safety, high speed, and cost-effectiveness [3]. In screening 
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sonography, RHD often presents as mitral regurgitation (MR), which is blood backflow 

into the left atrium during ventricular systole/contraction [3]. While high-resource ul-

trasound devices are equipped with electrocardiogram (ECG) gating, which helps the 

determination of ventricular systole, hand-held ultrasound machines used in low-re-

source settings do not include this property.  

The World Heart Federation (WHF) has established echocardiographic criteria to 

detect RHD based on the morphological and functional analysis of the heart valves. 

Using these criteria, RHD can be categorized into three groups: borderline, definite, 

and severe [3]. Whereas the WHF grading system is standard for RHD detection, it is 

complex and requires input from expert cardiologists [4], [5]. Although simplified grad-

ing systems have been proposed to detect RHD, these methods need further validation 

for clinical applications [6]–[8].   

Imaging methods used texture analysis to assess the MR severity from echocardio-

grams [9], [10]. However, these methods did not detect RHD. Several other studies 

proposed to identify RHD from heart sound data [11], [12]. However, auscultation 

shows lower sensitivity than echocardiography for RHD detection [13]. Recently, con-

volutional neural networks (CNNs) have shown great success in several facets of auto-

matic echocardiogram analysis [14], including view classification [15], [16], cardiac 

segmentation [17], and diagnosis of heart disease [18]. The state-of-the-art method for 

RHD detection was presented in [19]. First, a 3D CNN was used to detect RHD based 

on the first 16 frames of each multi-view color Doppler and B-mode echocardiogram. 

Then, a supervised meta-classifier was applied to aggregate the prediction results.  

Recent computer vision studies have shown that fusing information from multiple 

views can be beneficial for improving the ability of a model to make decisions. Seeland 

and Mäder [20] showed that the integration of visual information through the network 

outperformed the fusion of classification scores by post-processing. Su et al. [21] used 

multiple views of a 3D object into a single deep learning model to recognize its shape. 

Later, Chen et al. [22] developed a multi-view vision Transformer to recognize a 3D 

object. Transformer, originally developed by Vaswani et al. [23], includes a self-atten-

tion mechanism in the structure of a deep learning model, which has shown great po-

tential in many computer vision tasks [24]. 

We hypothesize that RHD can be accurately detected using a simplified imaging 

protocol based only on ungated color Doppler echocardiograms acquired at the point 

of care. To the best of our knowledge, the automatic detection of RHD using only color 

Doppler ultrasound has not been done before. In this paper, we present a complete 

framework for automatic RHD detection using two-view color Doppler echocardio-

grams (parasternal long axis [PLAXC] and apical 4-chamber [A4CC]). Our framework 

includes a pre-processing step for view identification, frame selection during ventricu-

lar systole, and left atrium segmentation, followed by the detection of RHD using the 

integration of two deep learning models (multi-view 3D CNNs and a multi-view Trans-

former). Our contributions include: 1) model ensemble of 3D CNNs and Transformer 

for the detection of RHD, 2) early fusion of visual information obtained from two views 

through the deep learning models, and 3) embedding spatiotemporal information with 

an attention mechanism to improve the accuracy of RHD detection. Early RHD 
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detection outside of elite healthcare systems has tremendous potential to improve the 

quality of life even save the lives of children in low-resource settings. 

2 Materials 

We acquired 2,136 color Doppler echocardiograms in video format (IRB approved) 

from 591 children (338 females; 253 males; mean age 12±3 years; ranging from 5 to 

18 years), who were examined for RHD detection. The data was acquired from at least 

two different views (PLAXC and A4CC) using a VIVID Q or VIVID IQ low-cost port-

able echocardiography machine (GE Milwaukee, WI) with a 5 MHz transducer. The 

data had an average image size of 597×823 pixels with a pixel resolution ranging be-

tween 0.1 and 0.4 mm. A board of expert cardiologists designated 250/591 cases as 

normal (no RHD) and detected RHD in 341/591 of the cases (63 definite, 260 border-

line, and 18 severe RHD). For reference, the A4CC and PLAXC views, the frames 

during ventricular systole, and the location of the atrium were manually labeled by ex-

perts on a subset of 95 cases. Fig. 1 shows sample echocardiograms for a normal case 

and from patients with borderline, definite, and severe RHD.  
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Fig. 1.  Examples of the localized atrium regions (ellipsoids) on two views (A4CC and PLAXC), 

synchronized by the identified ventricular systole duration; (a) a normal case and patients with 

(b) borderline, (c) definite, and (d) severe RHD 

3 Methods 

Fig. 2 illustrates an overview of the proposed method, including (1) echocardiogram 

homogenization and (2) detection of RHD.  

 

3.1 Echocardiogram Homogenization 

Echocardiogram homogenization was performed to standardize the image information 

that was relevant to RHD detection, which was beneficial for improving the learning 

ability of models. This step included (1) view identification, (2) frame selection during 

ventricle contraction, and (3) left atrium segmentation.  
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View Identification. A4CC and PLAXC are the standard views to visualize mitral in-

flow/outflow for regurgitation. To retrieve these views from the multitude of collected 

data for each patient, we passed the first frame of each video stream (representative 

frame) through a deep learning classification model. The model included: (1) a ResNet-

50 CNN with an input image size of 256 × 256 pixels ×3 color channels, (2) a 7 × 7 

average pooling layer, (3) a fully connected layer of 512 units with rectified linear unit 

(ReLu) activation function, and (4) a final output layer with Softmax probability func-

tion to classify views to three categories (A4CC, PLAXC, and other). ResNet-50 CNN 

was pre-trained on the ImageNet datasets [25]. Parameters were selected based on the 

maximum accuracy criterion for the validation datasets. A size of 256 pixels was deter-

mined based on the memory required. The model was trained using the categorical 

cross-entropy loss function, a batch size of 32, the Adam optimization algorithm, a 

learning rate of 0.0001, and a total of 100 epochs.  

 

 
Fig. 2. Flowchart of the method proposed for RHD detection  

 

 

Frame Selection during Ventricle Contraction. MR occurs during ventricle contrac-

tion/ventricular systole when the mitral valve closes. To identify frames during ventric-

ular contraction, we employed a model with the same structure as that explained in 

View Identification, with the following notable differences: all frames from the video 

stream were analyzed. In addition, we used the binary cross-entropy loss function. Fig. 

1 shows representative examples.       

 

Left Atrium Segmentation. The left atrium is the region where the MR occurs. To 

segment the left atrium, we utilized LinkNet [26], [27] with the VGG16 encoder, pre-

trained on the ImageNet datasets. In [28], LinkNet showed good accuracy for ultra-

sound-based kidney segmentation. The model took an input image of size 256 × 256 

pixels ×3 color channels and examined it through five resolutions. All layers employed 

the ReLu activation function except the last one, which used the sigmoid probability 

function. To train the model using the reference datasets, a batch size of 32 and 500 

epochs along with the Adam optimization algorithm and learning rate of 0.0001 were 

used to minimize the negative value of the Dice similarity coefficient as a loss function.  
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3.2 Detection of Rheumatic Heart Disease 

We developed a model ensemble of multi-view 3D CNNs and a multi-view Trans-

former to fuse the spatial and temporal features with an attention mechanism for RHD 

detection.  

 

 

Fig. 3. The structure of the employed 3D convolutional neural networks (CNNs) and Transformer  

Multi-View 3D Convolutional Neural Networks. We used 3D CNNs to extract spa-

tiotemporal information from two views, which fused them in a single end-to-end net-

work (Fig. 3). Input images were created from the localized left atrium regions captured 

during ventricular systole, resampled to 64 × 64 pixels × 3 color channels × 16 frames. 

These sizes were determined based on memory management. First, each 3D input im-

age was processed using two 3 × 3 × 3 convolutional filters with the ReLu activation 

function. Each filter was followed by a batch normalization layer and 2 × 2 × 2 max-

pooling by strides of 2 in each dimension. Then, the features extracted from the two 

views were concatenated and processed together using two fully connected layers, in-

cluding 256 units with the ReLu activation function and 2 units with the Softmax prob-

ability function. The model employed a batch size of 64 to minimize the binary cross-

entropy loss function using the Adam optimization algorithm with a learning rate of 

0.0001 during 350 epochs.  

Multi-View Transformer. We included a Transformer to embed relevant dependen-

cies between the frames during ventricular contraction and draw attention to the im-

portant time points. The structure of our Transformer is shown in Fig. 3. First, we ap-

plied a DenseNet121 CNN, pre-trained on the ImageNet dataset, to capture the low-

level features from the two views. DenseNet121 CNN analyzed frames during ventric-

ular systole, resampled to 16 frames with a size of 64 × 64 pixels × 3 color channels. 

The information obtained from the two views was aggregated for high-level analysis 

by a Transformer model, similar to the one proposed in [23]. The Transformer model 
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first embedded the positional information into the input features to keep the sequential 

information. Then, the model learned relationships between frames using a self-atten-

tion module followed by a feed-forward neural network, which consisted of two layers 

with a Gaussian error linear unit [29]. Shortcut connections between the input and out-

put of each block were used to directly pass the gradients through the network. After 

each block, a normalization layer was applied to increase the generalizability and de-

crease the processing time. The features encoded by the Transformer model were 

downsampled with a global max-pooling operation and fed to the last fully connected 

layer with the Softmax probability function to predict RHD. Before the last fully con-

nected layer, we applied a dropout with a keep rate of 0.5. The model was trained using 

a batch size of 10 and the Adam optimization algorithm (learning rate of 0.0001) to 

minimize the binary cross-entropy loss function through 350 epochs. Parameters were 

selected based on the maximum accuracy criterion for the validation datasets. 

Prediction of Rheumatic Heart Disease. The 3D CNNs analyzed all frames during 

ventricular systole as volume data to assess RHD, while the Transformer evaluated the 

data frame by frame. Since the two deep learning models analyzed the data from dif-

ferent perspectives, we fused their predictive scores in an ensemble model by applying 

the maximum voting strategy to increase the accuracy. Furthermore, when multiple ac-

quisitions were available, as is typical in clinical practice, we included all the ventricle 

contractions from the available A4CC and PLAXC views to obtain the final predictive 

score of RHD. We compared the performance of different approaches using the Wil-

coxon signed-rank method with a significance level of 0.05. 

4 Experimental Results 

Our method was implemented using Keras (version 2.6.0) and TensorFlow (version 

2.6.2) and trained on a GeForce GTX TITAN X GPU (NVIDIA, Santa Clara, CA) with 

12 GB memory. We evaluated our method using cross-validation, including five folds 

for validation and one fold for testing. After setting aside 20% of the cases for testing, 

we randomly split the rest of the data into training and validation with a ratio of 80:20. 

Thus, RHD detection was trained on 5,108 images (378 cases), validated on 1,277 im-

ages (94 cases), and tested on 1,510 images (119 cases). Images from the same patient 

were not shared between the training, validation, and test sets. We randomly balanced 

the number of training labels for each task, including the number of (1) A4CC and 

PLAXC views in the view identification task, (2) frames during ventricular systoles in 

the frame selection task, and (3) normal and RHD cases in the RHD detection task. On 

a single GPU, the training time for view identification, frame selection, and atrium seg-

mentation was 45 min, 100 min, and 250 min, respectively. The training time for RHD 

detection was 255 min, including 165 min and 90 min for the 3D CNN and the Trans-

former, respectively. While not performed in this study, parallelization is feasible. 

Table 1 shows a summary of quantitative results (mean and standard deviation) for 

each step of homogenizing the analysis of ungated echocardiograms. Accurate perfor-

mance of the identification of the image view, cardiac cycle, and atrium locations 
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showed that our datasets were correctly homogenized, which made training easier for 

the RHD detection model using ungated images acquired with a manual probe. In Table 

2, the quantitative RHD detection results obtained from different deep learning models 

and views are presented for the validation and test experiments. Integrating the infor-

mation from both views increased the detection accuracy of RHD in comparison to 

using single views. A model ensemble of multi-view 3D CNNs and a multi-view Trans-

former significantly improved the performance compared to each application of 3D 

CNNs and Transformer (p-value of 0.03 and 0.04, respectively).  

Table 1. Quantitative results obtained for each step of ungated echocardiogram homogenization  

 View identification Frame selection Atrium localization 

Model ResNet-50 CNN ResNet-50 CNN LinkNet 

View Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity DSC HD (mm) 

A4CC  0.99±0.08 1±0  0.99±0.09  0.94±0.22 0.96±0.17  0.93±0.24  0.88±0.05 0.55±0.43 

PLAXC 0.99±0.08  0.99±0.07  0.99±0.08  0.93±0.23 0.94±0.23  0.93±0.23  0.9±0.04 0.45±0.22 

DSC – Dice similarity coefficient; HD – Hausdorff distance. 

Table 2. Quantitative RHD detection results using different deep learning models and views 

 Validation Test 

Model 3D CNNs Transformer Ensemble Ensemble 

View A4CC PLAXC Both* A4CC PLAXC Both** Both*,** Both 

Accuracy 0.68±0.37 0.71±0.35 0.73±0.35 0.67±0.41 0.68±0.36 0.7±0.36 0.75±0.34 0.78±0.41 

Sensitivity 0.75±0.35 0.82±0.29 0.75±0.32 0.63±0.43 0.65±0.36 0.75±0.34 0.78±0.32 0.81±0.39 

Specificity 0.59±0.37 0.56±0.37 0.71±0.31 0.72±0.36 0.73±0.35 0.63±0.36 0.72±0.33 0.74±0.44 

*p-value = 0.03; **p-value = 0.04 

5 Discussion  

RHD is a major concern in pediatric health, especially in low- and middle-income coun-

tries with limited access to specialized clinical facilities [4]. Early detection and treat-

ment of RHD can prevent heart failure or death. Echocardiography is an efficient exam 

used to diagnose RHD and trigger treatment, but it requires the input of expert cardiol-

ogists. Moreover, portable low-cost ultrasound machines used by non-experts do not 

use gating, which further complicates the interpretation of data. This paper proposed a 

fully automatic framework for the detection of RHD using only color Doppler echocar-

diography clips. Our approach does not require gating or ECG analysis for the detection 

of ventricular contraction, making it compatible with the data collected using handheld 

ultrasound devices. Additionally, the fully automated nature of the model will expand 

accessibility beyond clinical experts, allowing for RHD diagnoses to be made in areas 

with otherwise limited access and resources.  

Assessment of color Doppler echocardiograms is challenging due, in part, to large 

variability in the pattern and timing of the MR jet, as well as the similarity between the 

spatial distribution of velocities at different locations. These challenges are also a re-

flection of the large variability between clinical ultrasound images acquired with 
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manual probes. To overcome these challenges, our method homogenized the images by 

selecting consistent views and periods of the cardiac cycle. We focused on the left 

atrium regions during ventricular systole to provide the relevant information for RHD 

detection and reduce the variability in datasets. Since A4CC and PLAXC views assess 

the mitral valve from different perspectives, their information was combined through 

the network to provide a compact structure and improve prediction accuracy. In addi-

tion, a model ensemble of multi-view 3D CNNs and a multi-view Transformer was 

applied to assess the data using spatiotemporal information with an attention mecha-

nism.  

Previous reports showed that expert clinicians who reviewed echocardiograms based 

on the complex WHF criteria detected RHD with an agreement of 66-83% [4], [5]. Our 

method demonstrated a clinically acceptable accuracy of 0.78 and has the potential to 

extend the benefits of RHD screening without requiring the input of an expert cardiol-

ogist. In addition, our method is fully automated and reproducible. Compared to the 

state-of-the-art approach [19], our method detects RHD with higher accuracy (0.78 vs. 

0.72) while requiring less data, i.e., only two-view color Doppler echocardiograms.  

The performance of our method may be affected by low-quality frames, in particular, 

if the left atrium is not visible. This suggests that in the absence of experts at the point 

of care of the patients, minimal training should be provided to the person acquiring the 

data. By proposing a fully automatic framework that harmonizes images without re-

quiring ECG gating, our method can be applied for RHD detection trials in low-re-

source settings. In future work, we will investigate how to assess image quality before 

the analysis for RHD detection.  

6 Conclusion 

We presented an automatic deep learning-based method to detect RHD using ungated 

multi-view color Doppler echocardiograms. First, we homogenized the images using 

deep-learning approaches to reduce data variability and to focus our classifier on the 

image information relevant to RHD. Next, we applied multi-view deep learning models 

(3D CNNs and Transformer) to analyze the spatiotemporal information of frames with 

an attention mechanism. Finally, we employed a model ensemble to fuse the predictions 

from multiple ventricular contractions and to obtain the RHD risk score. Results 

showed that our method could detect RHD as reliably as expert clinicians and outper-

formed the state-of-the-art approach for detecting RHD. Our approach is compatible 

with low-price, handheld ultrasound devices without ECG gating, which makes it ap-

plicable for RHD screening in low- and middle-income countries with limited access 

to specialists.  
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