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Abstract. Acquiring pixel-level annotation has been a major challenge
for machine learning methods in medical image analysis. Such difficulty
mainly comes from two sources: localization requiring high expertise, and
delineation requiring tedious and time-consuming work. Existing meth-
ods of easing the annotation effort mostly focus on the latter one, the
extreme of which is replacing the delineation with a single label for all
cases. We postulate that under a clinical-realistic setting, such methods
alone may not always be effective in reducing the annotation require-
ments from conventional classification/detection algorithms, because the
major difficulty can come from localization, which is often neglected but
can be critical in medical domain, especially for histopathology images.
In this work, we performed a worst-case scenario study to identify the
information loss from missing detection. To tackle the challenge, we 1)
proposed a different annotation strategy to image data with different
levels of disease severity, 2) combined semi- and self-supervised repre-
sentation learning with probabilistic weakly supervision to make use of
the proposed annotations, and 3) illustrated its effectiveness in recov-
ering useful information under the worst-case scenario. As a shift from
previous convention, it can potentially save significant time for experts’
annotation for AI model development.

Keywords: Clinical-realistic Annotation, Histopathology, Probabilistic
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1 Introduction

Supervised deep learning methods have shown state-of-the-art performances in
many applications from natural images to the medical domain [9, 17, 14]. One of
the major challenges of supervised methods is their reliance on the quantity and
quality of the data and annotations. Using fully delineated segmentation masks
for training has long been the common practice. Annotators need to first localize
the object of interest from the image, then delineate its boundary. Thus the
“annotation difficulty” can come from two sources: localization, and performing
a specific type of annotation on the localized region.

For natural image tasks, localization is often less of a concern since our brains
are trained to recognize objects from a natural scene. Therefore, the challenge
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comes mostly from the process of delineating the complex shapes from the back-
ground. To reduce the burden of manual boundary drawing, several “weak”
annotation techniques have been proposed, mainly to replace the “strong” full-
boundary delineation with easier alternatives, including points [1], bounding
boxes [5, 16, 10], and scribbles [12].

In medical domain, there are similar attempts following this strategy [13, 2,
18] to address the issue of tedious boundary delineation. However, performing
accurate boundary delineation may not always be the most critical issue. Instead,
the localization can pose a bigger challenge for annotators. This is because lo-
calization demands much higher expertise comparing to segmentation. In this
work, we postulate that “weak” label alone may not be sufficient to make the
annotation “easy” since the major difficulty can come from localization. There-
fore, to accommodate for clinical-realistic annotation time, we would like to raise
this issue to the attention of our society, and propose a shift from convention.

The major contributions of this work are: 1) We provide detailed analysis
of the challenges, and simulated a “worst-case” scenario under clinical-realistic
time constraint. 2) We proposed a more balanced annotation strategy to tackle
the challenges from such time/resource limit, and to better model the difficulties
in medical image annotation for AI model development. 3) To utilize the pro-
posed annotations, we designed a semi-supervised learning strategy by using the
probabilistic distribution information. With the candidate tasks of tumor detec-
tion from histopathology images, we illustrated the potential of the proposed
strategies that may significantly ease the annotation burden.

2 Method

In this work, we target at the task of lesion detection from histopathology im-
ages. In clinical routine, digital scanners capture the entire sample slide as whole
slide image (WSI). Pathologists examine the WSIs carefully under different reso-
lutions, searching for the patterns of cell appearance change indicating diseases.
Each individual WSI can have a dimension of 100k × 100k pixels. At this scale,
it can be very difficult for both disease region localization and delineation: small
lesions can occupy less than 0.1% of the whole image, which is highly possible to
be missed; while large lesions can occupy more than 50% of the slide, requiring
tens of thousands of clicks if performing full boundary annotation. Hence, the
annotation for AI model development often require much more time than what
is acceptable in clinical routine [6].

To ease the difficulty of annotation for AI model development so that it
can be achieved under a clinical-realistic setting, existing works proposed to use
sparse point annotation [8], or diagnosis path [23] to replace full segmentation
annotation. As the extreme of “weak” annotation category, a relatively common
practice in histopathology domain is to learn from a single label for the entire
WSI indicating the clinical findings. Most of time such problem is solved using
multi-instance learning [22]. However, although a single label is the most simple
from annotation input perspective, we argue that it does not directly relate to
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how “easy” the annotation is, and hence may not be sufficiently helpful to ease
the annotation burden.

Fig. 1. Different difficulty levels in localization and performing 4 types of annotation:
(A-C) give example of three common cases of tumor detection in histopathology: (A)
distributed large tumor; (B) focal and medium-size tumor; (C) focal and small tu-
mor. Different annotations illustrated in (A): single 4-point polygon (red), 10-point (5
positive yellow + 5 negative green), and full delineation (blue).

Annotation Strategy As shown in Fig. 1, the tumor region occupies 51%,
3%, and 0.01% of the foreground tissue for Case A, B, and C. For Case A, the
annotation challenge mainly comes from delineation. It is easy to capture the
tumor site, but takes tedious work to segment it. For Case B, both localization
and segmentation are moderately easy. In contrast, for Case C, the challenge
mainly comes from localization: it takes pathologist significant effort to very
carefully go over the WSI to identify the tiny region that has tumor, but once
it is located, it is very easy to do the delineation. Therefore in clinical practice,
“weak” label does not necessarily mean less effort. According to clinical studies,
diagnosis can have 3.4% false negative, and 5.5% false positive [15]. With second
opinion [21], 6.6% can have a change of diagnosis. Hence, “weak” label can be
both “hard” and unreliable for cases like C. One aim of this work is to find such
an annotation strategy that for different cases, the efforts are always close to
origin in the 2D coordinate system shown at the right side of Fig. 1, while in the
meantime provide as much information as possible for the AI algorithm training.

To tackle the above challenges, we propose a new annotation strategy to ac-
count for the difficulty arising from both localization and delineation. Annotators
are expected to do two types of annotations: 1) a single k-point polygon on
the major tumor site (if there are multiple tumors) as illustrated by the red
polygon in Fig. 1(A), we set k = 4 in this study; 2) a rough (stride of 5%)
estimation of the tumor/tissue area ratio. For 2), annotators will provide a
direct judgement for small/medium focal tumors (Fig. 1(B), around 5%), or an
estimated multiplier for the polygon area v.s. the whole tumor area(e.g. ×4 for
Fig. 1(A)), then the ratio is calculated automatically by dividing the area with
tissue area segmented by Otsu thresholding [11]. With our experiments, 5% is a
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reasonable stride for this rough estimation. Then for images with different levels
of tumor presence, the proposed annotation strategy is:

– Large tumors (e.g. Fig. 1(A)), provide both polygons and ratio
– Medium tumors (e.g. Fig. 1(B)), provide polygon only (if focal), or both if

there are multiple tumors and only one is being annotated
– Small tumors (e.g. Fig. 1(C)), provide polygon only, but within clinical-

realistic time limit. Note that in the worst-case scenario, most cases in this
category will be considered “missed by annotators”.

In this way, we provide decent polygon annotations for tumors of all sizes, and
with area estimation for further probability modeling on large tumor regions.

Worst-case Scenario As compared with conventional annotation strategy where
annotators need to take a lot of time and effort to either delineating the complex
boundaries, or identifying the tiny region to provide/reject a positive label, in
this work, we set the environment to be clinical realistic in that 1) large tumors
are sparsely annotated, and 2) small tumors are located only if identified within
time limit. Under this setting, we would like to design a training algorithm by
considering both the available information from the above annotation strategy,
and the potential uncertainty introduced by the missing tumor regions. To fully
test the capability of the proposed method, we did our study under a worst-
case scenario. In our experiment dataset of Camelyon 16 [6], out of 111 training
cases, 55 are less than 1%, only 25 have tumor region greater than 10%. Given
the statistics from [6], under “routine diagnostic setting”, pathologists’ sensi-
tivity range from 58.9% to 71.9% with mean 62.8%. Hence, it is reasonable to
simulate the worst-case scenario by considering all lesions under 1% as missing
in annotation.

Semi-supervised Learning with Probabilistic Ratio Supervision We de-
sign a semi-supervised method based on the proposed polygon and ratio annota-
tions. We leverage semi- and self-supervised learning techniques to train a base
model that can have high false positive rate, then make use of weak supervision
from tumor proportional ratio under a probabilistic setting to refine the model.

Fig. 2 illustrated the pipeline of the system. For Stage 1, we follow MixMatch
method similar to the one proposed in [8], but with the proposed polygon an-
notation. We split our dataset into the three categories following the strategy
proposed above: WSIs with no annotated tumors, WSIs with both polygon and
ratio annotations, and WSIs with polygon annotations only. For Stage 1, we
generate positive samples by random sampling from the polygon regions, and
negative samples by random sampling from WSIs with no annotations. Although
it is possible to get positive patches from the latter, the possibility is low and
can be regarded as noise during training.

With trained network from Stage 1, the learnt representation is transferred
to Stage 2 and refined by probabilistic ratio supervision. Similar information has
been recorded for diagnostic purposes in some clinical protocols. And existing
work proposed to utilize such information [19] for subclass identification, where
it is modeled as a pseudo label generation process in a deterministic way: the
patches are pre-selected and fixed across the entire training process, only the



Semi-supervised Clinical-realistic Annotation for Histopathology 5

Fig. 2. Proposed semi-supervised pipeline with probabilistic ratio supervision.

pseudo labels will change according to the correct ratio. Hence, it needs a rela-
tively good sampling strategy to begin with, and every step it need to perform
inference over the entire dataset. Unfortunately for Camelyon dataset, 55/111
cases have tumor region less than 1%. It is thus neither realistic to correctly
sample the potential tumor site, nor to do inference on all locations every step.

Due to this unique class imbalance issue, we propose to model the ratio
information in a probabilistic manner. As shown in Fig. 2, at Stage 2, a batch x
consists of a fixed number of K patches are randomly sampled from tissue region
of a single WSI with rough ratio estimation r%. From a probability perspective,
it is expected that there will be around K× r% cases of positive finding. Since r
is a “rough” estimation, we model the uncertainty with a linear transition label.
Specifically, we define a “fuzzy” range rf around r, indicating that the positive
ratio would be at least rmin = max(0, r−rf ), and at most rmax = min(r+rf , 100).
To reflect this fuzzy range, we generated a target prediction vector y with length
K as:

yi = 1−max(min(i, rmax)− rmin, 0)/(rmax − rmin) (1)

such that expected label is 1 for i <= rmin, 0 for i >= rmax, and linear in be-
tween. In this way, the fuzzy sampling is modeled with weaker label supervision.
In our experiment for the ease of sampling, we set K = 100, and rf = 2, as the
ratios are with stride of 5%.

With CNN model f , the probabilistic ratio loss can then be designed as the
binary cross entropy loss between the sorted model output o = sort(f(x)) and
this “expected target vector” y, the sorted probabilities represent the ordered
confidence of a random patch being tumor.

Lratio = BCE(sort(f(x)), y) (2)
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Pseudo Labeling with Uncertainty Estimation In order to further make
use of the data with ratio annotation, we utilized the Monte Carlo dropout [7] to
estimate the uncertainty of the patch predictions from the K patch samples of
every WSI. Due to the significant positive/negative imbalance of Camelyon 16
data, we only keep positive samples with high confidence for “feedback training”.
Specifically, we keep a queue of N samples containing the confident positive
patches with their corresponding uncertainty UN . At every step, out of the sorted
predictions sort(f(x)), we select the first K × r%, which are expected to be
positive. And according to the estimated uncertainty UR, we replace k samples
from N with the ones from R whose uncertainty is higher UR(i) < UN (j), i.e.
replacing the more uncertain ones with more confident ones. The loss of these N
samples will be

Lfeedback = BCE(f(xN ), Y+) (3)

where Y+ is the vector corresponding to positive. The total loss is

L = Lratio + λLfeedback (4)

As r >= 10 cases already have polygon annotations being used in Stage 1, we
select only r < 10 cases in this feedback training. Also in this study, we use
N = 100, and λ = 1.

3 Experiments and Results

We test our method using the publicly available Camelyon 16 dataset [6]. The
length of the WSIs range from 50k to 200k pixels with two types of microns/pixel:
0.226 × 0.226 and 0.243 × 0.243. The training set consists of 111 tumor (with
ground truth segmentations) and 159 normal WSIs. Testing set has 129 cases,
and organizer provided the ground truth for 48 of them. All results below are
tested on these 48 cases as the ground truth for other cases are unavailable.
(Note that this can cause some discrepancies from the metric number reported
in literature. For example, we used the code and model provided by [11], and
on these 48 cases, the FROC score is 0.70, while in the paper [11], the reported
FROC is 0.79. Also, the cases without ground truth can not be considered nor-
mal, because the result does not match.)

In this study, we compare the proposed annotation and learning strategy to
several state-of-the-art alternatives, including fully-supervised, semi-supervised,
and weakly-supervised methods with different levels of annotation. The meth-
ods include: 1) fully-supervised [11] with ground truth segmentation annotations.
This is the expected “upper bound” for the experiments. For this baseline, we
experimented with both customized (provided by [11]) and random sampling
strategy in patch selection. Also, under our “worst-case” setting where the 55
cases with small tumors are all missed by annotators, we did an experiment
with the training data selected from the other 56/111 cases with the customized
sampling strategy. 2) SimCLR model [3] trained on both Camelyon and Patch
Camelyon dataset in a self-supervised manner, and then fine-tuned using either
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56 cases with polygon annotation, or 50% of the patch dataset [20]. 3) Mix-
Match trained on 10-point or polygon annotations following [8]. 4) Weakly su-
pervised model [4] using 0/1 label only, which is specifically designed and tuned
on histopathology and Camelyon 16 data. All algorithms trained on Camelyon
16 data used 224× 224 patches at level 0 (40x), while Patch Camelyon network
used 96× 96 patch at level 2 (10x). Note that these methods are one-stage, i.e.
some of them are used as the base model for our Stage 2 finetuning.

We tried our best to reproduce the results by using the original code and
model directly if they are available. For 1), we ran inference with the model pro-
vided with the customized sampling experiment. Further, we extracted all possi-
ble training samples with ground truth annotations at a stride of 128, and trained
the model with the training code provided by the authors. For 2), we trained
our model following [3], and perform inference under both common settings as
other method, and the patch size and level as Patch Camelyon dataset [20]. For
3), we manually generated point annotations, unlabeled and extension sample
sets, following the guidelines from [8] and train a model with the code provided
by authors. For 4), we directly cite the metric number from the original paper.

Table 1. Quantitative FROC evaluation of different methods in a one-stage manner.

Method Training Data Annotation Amount Sampling FROC

Fully-supervised [11] Camelyon 16 Mask Full Customized 0.70
Fully-supervised [11] Camelyon 16 Mask Full Random 0.51

Fully-supervised [11] Camelyon 16 Mask 56/111 Customized 0.36
SimCLR [3] Camelyon 16 Polygon 56/111 Random 0.38
SimCLR [3] Patch Camelyon 0/1 patch 50% Random 0.39

MixMatch [8] Camelyon 16 10-point 56/111 Random 0.08
MixMatch [8] Camelyon 16 Polygon 56/111 Random 0.10

Weakly-supervised [4] Camelyon 16 0/1 WSI Full Random 0.31

Proposed Camelyon 16 Polygon+ratio 56/111 Random 0.49

For ablation studies, we replaced the two components in the proposed pipeline
with other alternatives. In this work, Stage 1 aims to learn a relatively good rep-
resentation for histopathology images. Therefore, either self-supervised methods,
e.g. SimCLR [3] with or without labeled fine-tuning, or semi-supervised method
with limited annotation e.g. MixMatch [8], can be applied. We also did an ex-
periment without Stage 1, start Stage 2 training with random initialization. For
Stage 2, we choose to disable the uncertainty estimation and feedback strategy,
using only the probabilistic ratio supervision. Also, we further relax the stride of
ratio estimation from 5% to 10%, which allows for more estimation uncertainty.

As shown in the two tables, the proposed probabilistic ratio supervision sig-
nificantly promote the performance from Stage 1, (0.38 to 0.44 for SimCLR with
labeled finetuning, and 0.08/0.10 to 0.40/0.47 for MixMatch). It is also better
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Table 2. Quantitative FROC evaluation of ablation configurations.

Stage 1 Annotation 1 Stage 2 Annotation 2 FROC

Skip N/A Probabilistic Ratio at 5% 0.02
SimCLR [3] N/A Probabilistic Ratio at 5% 0.34
SimCLR [3] Polygon Probabilistic Ratio at 5% 0.44

MixMatch [8] 10-point Probabilistic Ratio at 5% 0.40
MixMatch [8] Polygon Probabilistic Ratio at 5% 0.47
MixMatch [8] Polygon Probabilistic Ratio at 10% 0.37

Proposed Polygon Probabilistic + feedback Ratio at 5% 0.49

than other alternative semi- and weakly-supervised methods (0.31). Comparing
the supervised method with full segmentation, it performs better than using the
25 annotated cases (0.36), and similar to using random sampling strategy on all
annotations (0.51). We noticed that the performance of MixMatch with point
annotations [8] seems to work a lot worse than what is presented in the original
paper on different dataset. It could be due to that the original paper used cus-
tomized data, which according to figures, seems to be much more balanced on
the tumor/tissue ratio. This class imbalance issue is also raised in the weakly
supervised paper [4].

For actual annotation time, the time of polygon + ratio is less than / com-
parable to the time cost of the 10-point annotations [8] at around 1 minute per
case: as shown in Fig. 1(A), the 10-points are preferred to cover all tumor sites
(5 points), as well as normal regions (the other 5 points); while the polygon is
4 points, but preferred to cover a large portion of the major tumor. Thus their
annotation complexity is comparable. As comparison according to [6], it takes
30 hours to review the 129 testing cases for determining the presence of tumor,
with an AUC 0.966. Regarding boundary delineation, although the precise time
is not mentioned, there are on average 8800 vertices per WSI, indicating huge
annotation effort. We performed an annotation experiment on the case shown
in Fig. 1 (A), and it took us 5 hours to finish a decent job.

4 Conclusion

In order to reduce the annotation burden for medical AI model development, in
this work, we proposed a shift from conventional annotate strategies where the
localization cost is neglected, but can be highly difficult for medical applications.
The proposed strategy take both localization and delineation into consideration.
With the information annotated, we designed a semi-supervised learning method
with probabilistic weak supervision and uncertainty-based feedback. Our results
on Camelyon 16 dataset under worst-case clinical realistic setting showed that
the proposed annotation and learning strategy achieved better performance than
its semi-supervised counterparts, and is comparable to fully supervised method
with random sampling strategy.
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