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Preface: Why are GPUs Driving the Next
Wave of Data Science?

The Evolution of Data Analytics

According to Thomas Davenport in the updated version of Competing on Analytics, analytical
technology has changed dramatically over the last decade, with more powerful and less
expensive distributed computing across commodity servers, and improved machine learning
(ML) technologies, enabling companies to store and analyze many different types of data and
far more of it.

The Beginning of Big Data Processing

Google invented a distributed file system and MapReduce, a resilient distributed processing
framework, in order to index the exploding volume of content on the web, across large
clusters of commodity servers. The Google file system (GFS] partitioned, distributed, and
replicated file data across the data nodes in a cluster. MapReduce distributed computation
across the data nodes in a cluster: users specify a map function that processes a key/value
pair to generate a set of intermediate key/value pairs and a reduce function that merges all
intermediate values associated with the same intermediate key. Both the GFS and MapReduce
were designed for fault tolerance by failing over to another node for data or processing.
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— User Program

\\,‘(1) fork

i(1) fork

map

(6) write output
file O

; om.Jtput
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Input Map Intermediate Files Reduce Ouptput
Files Phase (on local disk) Phase Files

Reference: MapReduce Google White Paper

A year after Google published a white paper describing the MapReduce framework, Doug
Cutting and Mike Cafarella created Apache Hadoop™.

However, Hadoop performance is bottlenecked by its model of checkpointing results to disk. At
the same time, Hadoop adoption has been hindered by the low-level programming model of
MapReduce. Data pipelines and iterative algorithms require chaining multiple MapReduce jobs
together, which can be difficult to program and cause a lot of reading and writing to disk.

Job1 Job 2 Last Job
Maps Reduces Maps Reduces Maps Reduces
SequenceFile SequenceFile SequenceFile
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Apache Spark Makes Big Data Processing Faster and Easier

Apache Spark started as a research project at UC Berkeley in the AMPLab, became a top level
Apache Software Foundation project in 2014, and is now maintained by a community of
hundreds of developers from hundreds of organizations. Spark was developed with the goal of
keeping the benefits of MapReduce's scalable, distributed, fault-tolerant processing
framework, while making it more efficient and easier to use. Spark is more efficient than
MapReduce for data pipelines and iterative algorithms because it caches data in memory
across iterations and uses lighter weight threads. Spark also provides a richer functional
programming model than MapReduce.

Distributed Datasheet

Partition 1 Partition 2 Partition 3 Partition 4
8213034705, 95, | 8213034705, 8213034705, 8213034705,
2.927373 115, 2.943484, 100, 2.951285, 117, 2.998947,
jake7870, 0...... Davidbresier2, gladimacowgirl, daysrus, 95...

e Data read into Memory Cache

e Partitioned across a cluster

e Operated on in parallel

e Cached in memory for iterations

Executor

artitioned

e——
S=iisess

Spark mitigated the I/0 problems found in Hadoop, but now the bottleneck has shifted from 1/0
to compute for a growing number of applications. This performance bottleneck has been
thwarted with the advent of GPU-accelerated computation.
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GPUs Accelerate Computer Processing

Graphics Processing Units (GPUs] are popular for their extraordinarily low price per flop
(performance) and are addressing the compute performance bottleneck today by speeding up
multi-core servers for parallel processing.

A CPU consists of a few cores, optimized for sequential serial processing. Whereas, a GPU has
a massively parallel architecture consisting of thousands of smaller, more efficient cores
designed for handling multiple tasks simultaneously. GPUs are capable of processing data
much faster than configurations containing CPUs alone.

o

CPU GPU
MULTIPLE CORES THOUSANDS OF CORES

Once large amounts of data need to be broadcasted, aggregated, or collected across nodes in
a cluster, the network can become a bottleneck. GPUDirect Remote direct memory access
with the NVIDIA Collective Communications Library can solve this bottleneck by allowing GPUs
to communicate directly with each other, across nodes, for faster multi-GPU and multi-node
reduction operations.

Multi-GPU
Multi-node

GPU Multi-GPU
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The benefits of GPUDirect RDMA are also critical for large, complex extract, transform, load
(ETL) workloads, allowing them to operate as if they were on one massive server.

Traditional Data Science Design Accelerated Data Science Design Optimal Data Science Design
SYSTEM MEMORY
SYSTEM MEMORY SYSTEM MEMORY
@ @ CPUs
CPUs CPUs —
#IMADE (ETL & TRAINING) STIRASE (ETL) 6|
TRAINING|
ETHERNET NETWORK ETHERNET NETWORK NVMe-oF
CPUs CPUs I
STORAGE (ETL & TRAINING) AYORAGE [ETL) @ CPUs
I I TRAINING

SYSTEM MEMORY SYSTEM MEMORY
SYSTEM MEMORY

GPU-Accelerated Data Science Powered by
RAPIDS

A key component of data science is data exploration. Preparing a data set for ML requires
understanding the data set, cleaning and manipulating data types and formats, and extracting
features for the learning algorithm. These tasks are grouped under the term ETL. ETL is often
an iterative, exploratory process. As data sets grow, the interactivity of this process suffers
when running on CPUs.

GPUs have been responsible for the advancement of deep learning (DL) in the past several
years, while ETL and traditional ML workloads continued to be written in Python, often with
single-threaded tools like Scikit-Learn or large, multi-CPU distributed solutions like Spark.

RAPIDS is a suite of open-source software libraries and APIs for executing end-to-end data
science and analytics pipelines entirely on GPUs, achieving speedup factors of 50X or more on
typical end-to-end data science workflows. RAPIDS accelerates the entire data science
pipeline, including data loading, enabling more productive, interactive, and exploratory
workflows.

Built on top of NVIDIA® CUDA®, an architecture and software platform for GPU computing,
RAPIDS exposes GPU parallelism and high-bandwidth memory speed through user-friendly
APls. RAPIDS focuses on common data preparation tasks for analytics and data science,
offering a powerful GPU DataFrame that is compatible with ApacheArrow data structures with
a familiar DataFrame API.
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Apache Arrow specifies a standardized language-independent columnar memory format,
optimized for data locality, to accelerate analytical processing performance on modern CPUs
or GPUs, and provides zero-copy streaming messaging and interprocess communication
without serialization overhead.

Parquet

Cassandra

session_id timestamp source_ip

Row1 [Nk 5 3/8/2012 2:44PM NS S S S 2S
Row 2 31246351 / 65.87.165.114
Row3 [NikibIELY] / 71.10.106.181
Row4  [hke 96 76.102.156.138

Traditional Memory Buffer Arrow Memory Buffer SELECT * FROM clickstream
WHERE session_id = 1331246351

Row 1 Lo
session_id

244570

1331261196
Intel CPU
RGN R 3/8/2012 2:38PM 3/8/2012 2:44PM
65.87.165.114

5.87.165.114 timestamp
1331244570

[URCE 3/8/2012 2:09PM 3/8/2012 &:46PM

71.10.106.181

99.155.155.225

1331261196 65.87.165.114

source_ip
RLTVE 3/8/2012 &6:46PM

71.10.106.181

76.102.156.138 76.102.156.138
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The DataFrame APl integrates with a variety of ML algorithms without incurring typical
serialization and deserialization costs, enabling end-to-end pipeline accelerations.

DAY IN THE LIFE OF A DATA SCIENTIST

another...  @*#! forgot to add a feature Find unexpected null values  restart ETL
stored as string... | train model

\ / / validate

B
t 2 coff /
g a\.:o pes2 : restart ETL workflow

eh, forgot to add a feature

 test model

/exuerlment with
optimizations

& repeat

start ETL
workflow™.
get a coffee

start ETL workﬂov:
get a coffee ™\ /,

CPU
POWERED
WORKFLOW,

J configure ETL __ [ f
switch to decaf workflow

GPU
POWERED | :
WORKFLOW i

.‘6 1 "

configure ETL workflow —

dataset collection
analysis

ETL

train

inference

Find unexpected null values

dataset downloads/ stored as string...

overnight /

dataset downloads
overnight

 LEGEND

I restart ETL workflow again

|
go home
stay late on time

By hiding the complexities of low-level CUDA programming, RAPIDS creates a simple way to
execute data science tasks. As more data scientists use Python and other high-level
languages, providing acceleration with minimal to no code change is essential to rapidly
improving development time.

Boosting Data Science Frameworks with
GPUs and the RAPIDS Library

Another way RAPIDS accelerates development is with integration to leading data science
frameworks, such as PyTorch, Chainer, and ApacheMxNet for DL and distributed computing
frameworks like Apache Spark and Dask for seamless scaling from GPU workstations to
multi-GPU servers and multi-node clusters. Also, products such as BlazingSQL, an open
source SAL engine, are being built on top of RAPIDS, adding even more accelerated
capabilities for users.

Apache Spark 3.x empowers GPU applications by providing user APIs and configurations to
easily request and utilize GPUs and is now extensible to allow columnar processing on the
GPU; all of which wasn’t supported prior to Spark 3.x. Internally, Spark added GPU scheduling,
further integration with the cluster managers (YARN, Kubernetes, etc.) to request GPUs, and
plugin points to allow it to be extended to run operations on the GPU. This makes GPUs easier
to request and use for Spark application developers, allows for closer integration with DL and
Al frameworks, such as Horovod and TensorFlow on Spark, and allows for better utilization of
GPUs. This extensibility also allows columnar processing, which opens up the possibility for
users to add plugins that accelerate queries using the GPU.
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Later in this eBook, we explore how the Apache Spark 3.x stack shown below accelerates
Spark 3.x applications.

APACHE SPARK 3.x GPU-ACCELERATED SOFTWARE STACK

DISTRIBUTED, SCALE-OUT DATA SCIENCE AND Al APPLICATIONS

END-TO-END APACHE SPARK 3.0 PIPELINE

ACCELERATED APACHE SPARK COMPONENTS ACCELERATED ML/DL FRAMEWORKS

Spark SQL DataFrames XGBoost TensorFlow

PyTorch Horovod

RAPIDS Accelerator for Apache Spark

RAPIDS

GPU-ACCELERATED INFRASTRUCTURE

NVIDIA GPUs in Action

Regardless of industry or use case, when putting ML into action, many data science problems
break down into similar steps: iteratively preprocessing data to build features, training models
with different parameters, and evaluating the model to ensure performance translates into
valuable results.

RAPIDS helps accelerate all of these steps while maximizing the user’s hardware investments.
Early customers have taken full data pipelines that took days, if not weeks, and ran them in
minutes. They've simultaneously reduced costs and improved the accuracy of their models
since more iterations allow data scientists to explore more models and parameter
combinations, as well as train on larger datasets.

Retailers are improving their forecasting. Finance companies are getting better at assessing
credit risk. And adtech firms are enhancing their ability to predict click-through rates. Data
scientists often achieve improvements of 1-2 percent. This can translate to tens or hundreds
of millions of dollars of revenue and profitability.
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Chapter 1: Introduction to Spark Processing

IDC predicts that data generated in data centers, as well as from edge computing and 10T, will
quintuple in the next seven years to 175 ZB. In tandem with the monumental growth of data,
Apache Spark from Apache Software Foundation has become one of the most popular
frameworks for distributed scale-out data processing, running on millions of servers—both on
premises and in the cloud. This chapter provides an introduction to the Spark framework and
explains how it executes applications.

Apache Spark is a fast and general purpose analytics engine for large-scale data processing,
that runs on Hadoop, Apache Mesos, Kubernetes, standalone, or in the cloud. Spark offers
high-level operators that make it easy to build parallel applications in Scala, Python, R, or
SQAL, using an interactive shell, notebooks, or packaged applications.

On top of the Spark core data processing engine, there exist libraries for SQL and
DataFrames, machine learning, GraphX, graph computation, and stream processing. These
libraries can be used together on massive datasets from a variety of data sources, such as
HDFS, Alluxio, Apache Cassandra, Apache HBase, or Apache Hive.

MLlib
(Machine
Learning)

Apache Spark

Spark

Streaming
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How Spark Executes on a Cluster

A Spark application runs as parallel tasks inside of executor processes on cluster nodes, with
execution coordinated between the SparkSession object in the driver program and the
Resource or Cluster manager (either Standalone, Mesos, YARN, or Kubernetes) on the cluster.

Worker Node

Executor
Cache

Spark Session
Partition

v
- ------ } Worker NOde

Executor
Cache

Spark can also run on a single machine, called local mode. In local mode, the driver program
and the tasks run in threads in the same Java Virtual Machine. Local mode is useful for
prototyping, development, debugging and testing. However local mode is not meant for
running production applications.

Creating a DataFrame from a File

A Spark DataFrame is a distributed Dataset of org.apache. spark.sgl.Row objects, that
are partitioned across multiple nodes in a cluster and can be operated on in parallel. A
DataFrame represents a table of data with rows and columns, similar to a DataFrame in R or
Python, but with Spark optimizations. A DataFrame consists of partitions, each of which is a
range of rows in cache on a data node.
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Worker Node

Executor
- Partition
Column .
' ) Partition

o
.

B

Worker Node

LA

DataFrame is like a Partitioned Table.

Executor

Partition

DataFrames can be constructed from data sources, such as csv, parquet, JSON files, Hive
tables, or external databases. A DataFrame can be operated on using relational
transformations and Spark SQL queries.

The Spark shell or Spark notebooks provide a simple way to use Spark interactively. You can
start the shell in local mode with the following command:
$ /linstallation path]/bin/spark-shell --master local[2]

You can then enter the code from the rest of this chapter into the shell to see the results
interactively. In the code examples, the outputs from the shell are prefaced with the result.

For execution coordination between your application driver and the Cluster manager, you
create a SparkSession object in your program, as shown in the following code example:

val spark = SparkSession.builder.appName ("Simple
Application") .master ("local[2]") .getOrCreate ()
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When a Spark application starts, it connects to the cluster manager via the master URL. The
master URL can be set to the cluster manager or local[N] to run locally with N threads, when
creating the SparkSession object or when submitting the Spark application. When using the
spark-shell or notebook, the SparkSession object is already created and available as the
variable spark. Once connected, the cluster manager allocates resources and launches
executor processes, as configured for the nodes in your cluster. When a Spark application
executes, the SparkSession sends tasks to the executors to run.

Worker Node

Executor

object Taxi { Cache
def main(args: Array[String] [
val spark: SparkSession=SparkSession.builder () . .
./b k-submit
.appName (“"Taxi”) .master (“local[*]”) .getOrCreate () /bin/spark-submi
<P
val df=spark.read.option(“inferSchema”,”false”) —> Cluster Manager

.option (“header”, true) .schema (schema) .csv(file)

Worker Node

df.groupBy (“hour”) .count () . show ()
} Executor
} Cache

With the SparkSession read method, you can read data from a file into a DataFrame,
specifying the file type, file path, and input options for the schema.

import org.apache.spark.sqgl.types.

import org.apache.spark.sqgl.

import org.apache.spark.sqgl.functions.

val schema =
StructType (Array (

StructField("vendor id", DoubleType),
StructField ("passenger count", DoubleType),
StructField("trip distance", DoubleType),
StructField("pickup longitude", DoubleType),
StructField("pickup latitude", DoubleType),
StructField("rate code", DoubleType),
StructField("store and fwd", DoubleType),
StructField ("dropoff longitude", DoubleType),
StructField("dropoff latitude", DoubleType),
StructField("fare amount", DoubleType),
StructField ("hour", DoubleType),
StructField ("year", IntegerType),
StructField ("month", IntegerType),
StructField("day", DoubleType),
StructField("day of week", DoubleType),
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Accelerating Apache Spark 3 Chapter 1: Introduction to Spark Processing

StructField("is_weekend", DoubleType)
))

val file = "/data/taxi small.csv"

val df = spark.read.option("inferSchema", "false")
.option ("header", true) .schema (schema).csv(file)

result:
df: org.apache.spark.sgl.DataFrame = [vendor id: double, passenger count:
double ... 14 more fields]

The take method returns an array with objects from this DataFrame, which we see is of the
org.apache.spark.sgl.Row type.

df.take (1)
result:

Array|[org.apache.spark.sql.Row] = Array([4.52563162E8,5.0,2.72,-
73.948132,40.829826999999995,-6.77418915E8,-1.0, -
73.969648,40.797472000000006,11.5,10.0,2012,11,13.0,6.0,1.01)

DataFrame Transformations and Actions

DataFrames provide a domain-specific language API for structured data processing, known as
transformations. Transformations create a new transformed DataFrame from the current
DataFrame and are lazily evaluated. Transformations are executed when triggered by an
action, which returns a result to the driver program or writes to disk. Once an action has run
and the value is returned, the DataFrame is no longer in memory, unless it is cached. Spark
can cache DataFrames using an in-memory columnar format by calling dataFrame.cache().
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Transformations create a new
DataFrame from the current one

Actions return
Driver Program values to driVer,

Application or write to disk
| Executor
Spark Session

Worker Node

Partition

]
Cluster Manager

Worker Node

Executor

Partition

Partition

Here is a list of some commonly used DataFrame transformations.

> select Selects aset of columns

» join Join with another DataFrame, using the given join expression

> groupBy Groups the DataFrame, using the specified columns

This groupBy transformation example groups the taxi DataFrame by hour of the day, then

the count action totals the number of taxi trips for each hour. The show action prints out the
resulting DataFrame rows in a tabular format.

df.groupBy ("hour") .count () .show (4)

result:
t————t +

|hour | count|

Fo—— - +
| 0.0] 12|
| 1.0]| 49|
| 2.0 658]
| 3.0 742
Fo—— - +

Following is a list of some commonly used DataFrame actions.

> show (n) Displays the first n rows in a tabular format

> take (n) Returns the first n rows in the DataFrame in an array
» count Returnsthe number of rows in the DataFrame

Leveraging NVIDIA GPUs to Power the Next Era of Analytics and Al WP-09926-001_v02 | 17



Accelerating Apache Spark 3 Chapter 1: Introduction to Spark Processing

DataFrame Transformation Narrow and Wide Dependencies

There are two types of DataFrame transformations, those with narrow dependencies and those
with wide dependencies. Transformations with narrow dependencies do not have to move data
between partitions when creating a new DataFrame from an existing one. An example narrow
transformation is filter () which is used to filter the rows from a DataFrame based on the

given SQL expression. The following example filters for the hour value = 0.

Multiple narrow transformations can be performed on a DataFrame in memory, using a
process called pipelining, making narrow transformations very efficient. Narrow
transformations like filter and select are used in the example below to retrieve taxi
fare_amounts for the 0 hour of the day.

// select and filter are narrow transformations

df.select ($"hour", S$"fare amount”).filter ($"hour" === "0.0" ).show(2)
result:
e +

|hour | fare amount |
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Transformations with wide dependencies have to move data between partitions, when creating
a new DataFrame from an existing one, in a process called a shuffle. Shuffles send data
across the network to other nodes and write to disk, causing network and disk 1/0. Example
wide transformations are groupBy, agg, sortBy, and orderBy. The wide transformation
shows groups by the hour value.

Following is a wide transformation to group by the hour value and count the number of taxi
trips by hour.
df.groupBy ("hour") .count () .show (4)

result:
t————f +

|hour | count |

fo—m— - +
| 0.0] 12|
| 1.0] 49|
| 2.0 658]
| 3.0 742]
fo—— - +
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How a Spark Application Executes

When a Spark query executes, it goes through the following steps:
» Creates a logical plan

» Transforms the logical plan to a physical plan

» Generates code

» Executes the tasks on a cluster

Apache Spark provides a web Ul that you can use to see a visual representation of these plans
in the form of Directed Acyclic Graphs (DAGs]). With the web Ul, you can also see how the plan
executes and monitor the status and resource consumption on your Spark cluster. You can
view the web Ul in real time with this URL: http://<driver-node>:4040. You can view the web Ul
after execution through Spark's history server at http://<server-url>:18080, provided that the
application’s event logs exist.

In the first step, the logical plan is created for the submitted SQL or DataFrame. The logical
plan shows the set of abstract transformations that will be executed. The Spark Analyzer uses
the Metadata Catalog to resolve tables and columns, then passes the plan to the Catalyst
Optimizer, which uses rules like filter push down, to optimize the plan.

Actions trigger the translation of the logical DAG into a physical execution plan. The physical
plan identifies resources that will execute the plan, using a cost model for different execution
strategies. An example of this would be a broadcast join versus a hash join.

saL Parser Analyzer Optimizer Planner Query Execution
\ i i i E
imi 1l Physical o Selected
Dataset ) Unresolved Optimized Y = Physical —»| RDDs
% Plans
o
O

/ Logical Plan T Logical Plan T Logical Plan Plans j

Metadata Cache
Catalog Manager

DataFrame

Reference: Databricks
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Viewing the Physical Plan

You can see the formatted physical plan for a DataFrame by calling the explain(“formatted”)
method. In the physical plan below, the DAG for d£2 consists of a Scan csv file, a Filter on
day of week, and a Project selecting columns] on hour, fare amount, and
day of week.

val df = spark.read.option("inferSchema", "false") .option("header",
true) .schema (schema) .csv (file)
val df2 = df.select($"hour", $"fare amount",

s$"day of week").filter($"day of week" === "6.0" )
df2.show (3)

result:

e e Fommmmccmmos +

|hour | fare amount|day of week|

fomm o fomm +
[10.0| 11.5] 6.0]|
[10.0| 5.5] 6.0]
110.0]| 13.0] 6.0
fomm o fomm +

df2.explain (“formatted”)
result:
== Physical Plan ==
* Project (3)
+- * Filter (2)
+- Scan csv (1)

(1) Scan csv

Location: [dbfs:/FileStore/tables/taxi tsmall.csv]

Output [3]: [fare amount#143, hour#144, day of week#148]
PushedFilters: [IsNotNull (day of week), EqualTo(day of week,6.0)]

(2) Filter [codegen id : 1]
Input [3]: [fare amount#143, hour#144, day of week#148]
Condition : (isnotnull (day of week#148) AND (day of week#148 = 6.0))

(3) Project [codegen id : 1]

Output [3]: [hour#144, fare amount#143, day of week#148]
Input [3]: [fare amount#143, hour#144, day of week#148]

Leveraging NVIDIA GPUs to Power the Next Era of Analytics and Al WP-09926-001_v02 | 21



Accelerating Apache Spark 3 Chapter 1: Introduction to Spark Processing

FILTER

You can see more details about the plan produced by Catalyst on the web Ul SQL tab. Clicking
on the query description link displays the DAG and details for the query.

WholeStageCodegen
0 ms (0 ms, 0 ms, 0 ms)

[Scan csv +details]

Filter +details

v
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In the following code, after the explain, we see that the physical plan for d£3 consists of a
Scan, Filter, Project, HashAggregate, Exchange, and HashAggregate. The
Exchange is the shuffle caused by the groupBy transformation. Spark performs a hash
aggregation for each partition before shuffling the data in the Exchange. After the exchange
there is a hash aggregation of the previous sub-aggregations. Note that we would have an in-
memory scan instead of a file scan in this DAG, if df2 were cached.

val df3 = df2.groupBy ("hour") .count
df3.orderBy (asc ("hour") ) show (5)
result:

-t +

| hour | count |

fomm o +
| 0.0] 12
| 1.0] 47|
| 2.0 658]
| 3.0 742]
| 4.0 812]
fom— - +

df3.explain
result:
== Physical Plan ==
* HashAggregate (6)
+- Exchange (5)

+- * HashAggregate (4)

+- * Project (3)
+- * Filter (2)
+- Scan csv (1)

(1) Scan csv

Output [2]: [hour, day of week]

(2) Filter [codegen id : 1]

Input [2]: [hour, day of week]

Condition : (isnotnull (day of week) AND (day of week = 6.0))
(3) Project [codegen id : 1]

Output [1]: [hour]

Input [2]: [hour, day of week]

(4) HashAggregate [codegen id : 1]

Input [1]: [hour]

Functions [1]: [partial count(l) AS count]
Aggregate Attributes [1l]: [count]

Results [2]: [hour, count]

(5) Exchange
Input [2]: [hour, count]
Arguments: hashpartitioning (hour, 200), true, [id=]

(6) HashAggregate [codegen id : 2]

Leveraging NVIDIA GPUs to Power the Next Era of Analytics and Al WP-09926-001_v02 | 23



Accelerating Apache Spark 3

Input [2]: [hour, count]
Keys [1]: [hour]

Chapter 1: Introduction to Spark Processing

Functions [1]: [finalmerge count (merge count) AS count (1)]

Aggregate Attributes [1]: [count(1l)]
Results [2]: [hour, count(l) AS count]

FILTER

PROJECT
FILE SCAN FILTER

Leveraging NVIDIA GPUs to Power the Next Era of Analytics and Al
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HASH
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Clicking on the SQL tab link for this query display the DAG of the job.
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Selecting the Expand details checkbox shows detailed information for each stage. The first
block WholeStageCodegen compiles multiple operators (scan csv, filter, project, and
HashAggregate) together into a single Java function to improve performance. Metrics such as
number of rows and spill size are shown in the following screen.

«| Expand all the details in the query plan visualization

‘WholeStageCodegen
845 ms (845 ms, 845 ms, 845 ms)

Scan csv +delalls

number of files read 1
filesystem read data size total {min, med, max) 0.0 B(0.0B, 0.0B, 0.0EB)
scan time total (min, med, masx) 0 ms (0 ms, 0 ms, 0 ms)

filesystem read data size (sampled) total {min, med, max) 1088.0 KB (1088.0 KB, 1088.0 KB, 1088.0 KB)

filesystem read time (sampled) total (min, med, max) 121 ms (121 ms, 121 ms, 121 ms)

diynamic partition pruning time total (min, med, max) 0 ms (0 ms, 0 ms, 0 ms)

metadata time 2

size of files read total (min, med. max) 1088.0 KB (1088.0 KB, 1088.0 KB, 1088.0 KB)
rows output 7.889

|

Filter +datalls

rows output 7,961

1

Project

1

spill size total {min, med, max) 0.0B{00B,0.0B, 0.0B)

HashAggregate +dotalls

time in eggregation build total {min, med, max) 581 ms (581 ms, 581 ms, 581 ms)

peak memaory total (min, med, max) 64.2 MB [64.2 MB, 64.2 MB, £4.2 MB)
passthrough output rows a

collizion rate {min, mad, max) 0,0, 0)

rows output 15
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The second block entitled Exchange shows the metrics on the shuffle exchange, including the
number of written shuffle records and the data size total.

Exchange +datails '
Stages: 7.0 8.0

shuffle records written 15
shuffle write time 12 ms
records read 15

local bytes read total (min, med, max) 912.0 B (539.0 B. 61.0 B, 61.0 B)

fatch wait time total (min, med, max) 0 ms {0 ms, 0 ms, 0 ms)

remote bytes read 00B
local blocks read 15
remote blocks read a

data size 360.0 B
remote bytes read to disk 0.0B
shuffle bytes written 912.0B

HashAggregate +details

&pill siza 0oE

tirme in aggregation build total (min, med, max) 206 ms (0 ms, 0 ms, 49 ms)

peak memory total (min, med, max) 530.0 MIB {256.0 KIB, 256.0 KiB, 32.3 MiB)
avg hash probe bucket list iters (min, med, max): (1,1, 1)

rows output 15
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Executing the Tasks on a Cluster

Chapter 1: Introduction to Spark Processing

In the third step, the tasks are scheduled and executed on the cluster.

Planner Query Execution
L
Physical s Selected
Plans » = —» Physical »  RDDs
> Plans
o
o

The scheduler splits the graph into stages, based on the transformations. The narrow
transformations (transformations without data movement] will be grouped (pipelined) together
into a single stage. The physical plan for this example has two stages, with everything before
the exchange in the first stage. Spark performs further optimizations at runtime, including
Whole-Stage Java Code Generation. This optimizes CPU usage by generating a single
optimized Java function in bytecode for the set of operators in a SQL query (when possible],
instead of generating iterator code for each operator.

Stage 1

FILTER

Stage 2

Each stage is composed of tasks, based on partitions of the DataFrame, which performs the

same computation in parallel.

Physical Plan

Stage 1

Stage 2
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Next the scheduler submits the stage task set to the task scheduler, which sends tasks to the
executors to run.

Worker Node

Task set sent to the Executor

task scheduler, which Cache

sends tasks to the

executors to run. ”
Partition

Worker Node

Executor
Cache

When the job completes, the action value is returned to the driver, or written to disk,
depending on the action.

Clicking the web Ul Jobs tab gives you details on the progress of the job, including stages and
tasks. In the following example, the job consists of two stages, with two tasks in the stage
before the shuffle and 200 in the stage after the shuffle. The number of tasks correspond to
the partitions. After reading the file in the first stage, there are two partitions.
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After a shuffle, the default number of partitions is 200. (You can configure the number of
partitions to use when shuffling data with the spark.sql.shuffle.partitions property).

- x
Details for Job 1
Status: SUCCEEDED
Associated SQL Query: 23
Job Group: 698576652175%103213_8593600963064183100_eb7954aa2d8345faBcdabbBe584d2ac3
Completed Stages: 2
» Event Timeline
*DAG Visualization
Stage 1 Stage 2
‘WholeStageCodegen Exchange
egan
hange
map
~Completed S
Stage Tasks: Shuffle
Id +  Pool Name Description Submitted Duration Succeeded/Total Input Output Read
2 B9B5TB6521759103213 | val df3 = df2.groupBy("hour"}).count df3.orderB... 2020/03/18 3s . 200/200 912.0
show at command-2718925348255775:3 +detalls | 21:22:56 B

1 B2B5TE6521759103213  val df3 = df2.groupBy("hour").count df3.crderB... 2020/0318 1s [ T
show at command-27 188253482557 75: 3 +detalls | 21:22:55

Summary

In this chapter, we introduced you to Spark, demonstrated how it executes your code on a
cluster, and showed you how to monitor this using the Spark Web Ul. Knowing how Spark runs
your applications is important when debugging, analyzing, and tuning the performance of your
applications.
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Chapter 2: Spark SQL and DataFrame
Programming

In Chapter 1, we explored how Spark DataFrames execute on a cluster. In this chapter, we'll
provide you with an overview of DataFrames and Spark SQL programming, starting with the
advantages.

DataFrames and Spark SQL Advantages

The Spark SQL and the DataFrame APIs provide ease of use, space efficiency, and
performance gains with Spark SQL's optimized execution engine.

Optimized Memory Usage

Spark SQL caches DataFrames (when you call dataFrame.cache) using an in-memory
columnar format which is optimized to: scan only required columns, automatically tune
compression, minimize memory usage and minimize JVM Garbage Collection.

Logical Table  Row
Representation Layout

[ a n al m:c1_a2 m:d:aS E:CS:E‘I[L u:c4:35 Hcs
al n cl

— Column
az H_CZ. Layout

a3 8]/ | a1 a2 a3 a4 as |bil (B2 3] [b4I B8] c1 2 [e3 [c4 [c5
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Spark SQL Vectorized Parquet and ORC readers decompress and decode in column batches,
which is roughly nine times faster for reading.

Query Optimization

Spark SQL’s Catalyst Optimizer handles logical optimization and physical planning, supporting
both rule-based and cost-based optimization. When possible, Spark SQL Whole-Stage Java
Code Generation optimizes CPU usage by generating a single optimized function in bytecode
for the set of operators in an SQL query.

Exploring the Taxi Dataset with Spark SQL

Data preparation and exploration takes 60 to 80 percent of the analytical pipeline in a typical
machine learning (ML) or deep learning (DL] project. In order to build an ML model, you have
to clean, extract, explore, and test your dataset in order to find the features of interest that
most contribute to the model’s accurate predictions. For illustrative purposes, we'll use Spark
SQAL to explore the Taxi dataset to analyze which features might help predict taxi fare amounts.

Load the Data from a File into a DataFrame and Cache

The following code shows how we loaded the data from a CSV file into a Spark Dataframe,
specifying the datasource and schema to load into a DataFrame, as discussed in Chapter 1.
After we register the DataFrame as an SAQL temporary view, we can use SQL functions on the
SparkSession to run SQL queries, which will return the results as a DataFrame. We cache the
DataFrame so that Spark does not have to reload it for each query. Also, Spark can cache
DataFrames or Tables in columnar format in memory, which can improve memory usage and
performance.

Load Data —» | DEIEEE L

// load the data as in Chapter 1
val file = "/data/taxi small.csv"

val df = spark.read.option("inferSchema", "false")
.option ("header", true) .schema (schema) .csv(file)

// cache DataFrame in columnar format in memory
df.cache

// create Table view of DataFrame for Spark SQL
df.createOrReplaceTempView ("taxi")

// cache taxi table in columnar format in memory
spark.catalog.cacheTable ("taxi")
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Using Spark SQL

Now we can use Spark SQL to explore what might affect the taxi fare amount, with questions
like: What is the average fare amount by hour of the day?

%sqgl

select hour, avg(fare amount)

from taxi

group by hour order by hour

With a notebook like Zeppelin or Jupyter, we can display the SQL results in graph formats.

=
5
o 25
§
I 20
o
Ky
E? 15
©
10
0.00

2 3 4 5 7 10 11 12 13 14 16 17 18 19 21 22 23

Following is the same query with the DataFrame API:

df.groupBy ("hour") .avg ("fare amount")
.orderBy ("hour") .show (5)

result:
o +

|hour | avg (fare amount) |

| 0.0111.083333333333334|
| 1.0122.581632653061224 |
| 2.0111.370820668693009 |
| 3.0113.873989218328841|
| 4.0 14.57204433497537|
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What is the average fare amount compared to the average trip distance?
%sqgl

select trip distance,avg(trip distance), avg(fare amount)
from taxi

group by trip distance order by avg(trip distance) desc

100

B avg(fare_amount)
80

60
40

20

5 15 25 35
AVG(TRIP_DISTANCE)

What is the average fare amount and average trip distance by hour of the day?
%sql

select hour, avg(fare amount), avg(trip distance)

from taxi

group by hour order by hour

25

20 I avg(trip_distance)
B avg(fare_amount)

1

- ]l]“”“”]]“]h]]]]

01234567 8 9101112131416171819212223

avg(trip_distance),
[4)]

o

o

What is the average fare amount and average trip distance by rate code?
$sql

select hour, avg(fare amount), avg(trip distance)

from taxi

group by rate code order by rate code
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60

50 B avg(fare_amount)
40 I avg(trip_distance)
30
20
10

0.00

-677418915 -197494169 252057394 654011034 1957796822

avg(fare_amount),

What is the average fare amount and average trip distance by day of the week?
%sqgl

select day of week, avg(fare amount), avg(trip distance)

from taxi

group by day of week order by day of week

‘§_
c 20
8
17}
"c_sl 15 [ avg(trip_distance)
2 B avg(fare_amount)
=
[<]
> 10

5.0 I I

0.00

n 1 D) 4 3 A
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Using Spark Web Ul to Monitor Spark SQL
SQL Tab

You can use the Spark SQL tab to view Query execution information, such as the query plan
details and SQL metrics. Clicking on the query link displays the DAG of the job.

Ermvircnment Executors =0l IDBC/ODBC Senver [

SQL
Completed Queries: 29

Completed Queries (29)

ID Description Submitted Duration Job IDs

28 tdf.groupBy("hour").avg("fare_amount").orderByi... 2020/03/27 20:18:15 3 s 9]
+details

Clicking on the +details in the DAG displays details for that stage

'Mlahslaigacndagan
17 ms (17 ms, 17 ms, 17 ms)

InMemoryTableScan +details

scan time total (min, med, max) 0 ms (0 ms, 0 ms, 0 ms)
rows output 7,999
est 7999 (1X)

l

HashAggregate +details

Exchange +details

geCodegen
660 ms (0 ms, 1 ms, 120 ms)

HashAggregate +details

[ TakeOrderedAndProject |
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Clicking the Details link on the bottom displays the logical plans and the physical plan in text
format.

In the query plan details, you can see:

» The amount of time for each stage.

> If partition filters, projection, and filter pushdown are occurring.

» Shuffles between stages (Exchange) and the amount of data shuffled. If joins or
aggregations are shuffling a lot of data, consider bucketing.

> You can set the number of partitions to use when shuffling with the
spark.sql.shuffle.partitions option.

» The join algorithm being used. Broadcast join should be used when one table is small and
sort-merge join should be used for large tables. You can use broadcast hint to guide Spark
to broadcast a table in a join. For faster joins with large tables using the sort-merge join
algorithm, you can use bucketing to pre-sort and group tables. This will avoid shuffling in
the sort merge.

Use the Spark SQL ANALYZE TABLE tablename COMPUTE STATISTICS to take advantage of
cost-based optimization in the Catalyst Planner.

Jobs Tab

The Jobs tab summary page shows high-level job information, such as the status, duration,
and progress of all jobs and the overall event timeline. Here are some metrics to check:

» Duration: Check the amount of time for the job.
> Stages succeeded/total tasks, succeeded/total: Check if there was stage/task failure.

Stages Tab

The stage tab displays summary metrics for all tasks. You can use the metrics to identify
problems with an executor or task distribution. Here are some things to look for:

> Duration: Are there tasks that are taking longer? If your task process time is not balanced,
resources could be wasted.

> Status: Are there failed tasks?
Read Size, Write Size: is there skew in data size?

» If your partitions/tasks are not balanced, then consider repartitioning.

Storage Tab

The Storage tab displays DataFrames that are cached or persisted to disk with size in memory
and size on disk information. You can use the storage tab to see if cached DataFrames are
fitting into memory. If a DataFrame will be reused, and if it fits into memory, caching it will
make execution faster.
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Executors Tab

The Executors tab displays summary memory, disk, and task usage information by the
executors that were created for the application. You can use this tab to confirm that your
application has the amount of resources needed, using the following:

» Shuffle Read Write Columns: Shows size of data transferred between stages.
» Storage Memory Column: Features the current used/available memory.
» Task Time Column: Displays task time/garbage collection time.

Partitioning and Bucketing

File partitioning and Bucketing are common optimization techniques in Spark SQL. They can
be helpful for reducing data skew and data shuffling by pre-aggregating data in files or
directories. DataFrames can be sorted, partitioned, and/or bucketed when saved as persistent
tables. Partitioning optimizes reads by storing files in a hierarchy of directories based on the
given columns. For example, when we partition a DataFrame by year:

df .write.format ("parquet")
.partitionBy ("year")
.option ("path", "/data ")
.saveAsTable ("taxi")

The directory would have the following structure:

path
|——to
|——table

— year = 2019
| part0l.parquet

| part02.parquet

— year = 2018
| partO0l.parquet

After partitioning the data, when queries are made with filter operators on the partition
column, the Spark SQL catalyst optimizer pushes down the partition filter to the datasource.
The scan reads only the directories that match the partition filters, reducing disk 1/0 and data
loaded into memory. For example, the following query reads only the files in the year = 2019
directory.

df.filter("year = '2019")
.groupBy ("year") .avg ("fareamount")
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When visualizing the physical plan for this query, you will see Scan PrunedinMemoryFilelndex[
/data/year=2019], PartitionFilters: [ (year = 2019]] .

Similar to partitioning, bucketing splits data by a value. However, bucketing distributes data
across a fixed number of buckets by a hash on the bucket value, whereas partitioning creates
a directory for each partition column value. Tables can be bucketed on more than one value
and bucketing can be used with or without partitioning. If we add bucketing to the previous
example, the directory structure is the same as before, with data files in the year directories
grouped across four buckets by hour.

df .write.format ("parquet")
.partitionBy ("year")
.bucketBy (4, "hour")
.option ("path", "/data ")
.saveAsTable ("taxi")

After bucketing the data, aggregations and joins (wide transformations) on the bucketed value
do not have to shuffle data between partitions, reducing network and disk /0. Also, bucket
filter pruning will be pushed to the datasource reducing disk I/0 and data loaded into memory.
The following query pushes down the partition filter on year to the datasource and avoids the
shuffle to aggregate on hour.

df.filter ("year = '2019")
.groupBy ("hour")
.avg ("hour")

Partitioning should only be used with columns used frequently in queries for filtering and that
have a limited number of column values with enough corresponding data to distribute the files
in the directories. Small files are less efficient with excessive parallelism and too few large
files can hurt parallelism. Bucketing works well when the number of unique bucketing column
values is large and the bucketing column is used often in queries.

Summary

In this chapter, we explored how to use tabular data with Spark SQL. These code examples can
be reused as the foundation for processing data with Spark SQL. In another chapter, we use
the same data with DataFrames for predicting taxi fares.
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Spark 3.x and GPUs

Given the parallel nature of many data processing tasks, it's only natural that the massively
parallel architecture of a GPU should be able to parallelize and accelerate Spark data
processing queries, in the same way that a GPU accelerates deep learning (DL} in artificial
intelligence (Al]. Therefore, NVIDIA® has worked with the Spark community to implement GPU
acceleration as part of Spark 3.x.

While Spark distributes computation across nodes in the form of partitions, within a partition,
computation has historically been performed on CPU cores. However, the benefits of GPU
acceleration in Spark are many. For one, fewer servers are required, reducing infrastructure
cost. And, because queries are completed faster, you expect a reduction in time to results.
Also, since GPU acceleration is transparent, applications built to run on Spark require no
changes in order to reap the benefits of GPU acceleration.

Accelerated ETL and Al in Spark

As machine learning (ML) and DL are increasingly applied to larger datasets, Spark has
become a commonly used vehicle for the data pre-processing and feature engineering needed
to prepare raw input data for the learning phase. The Spark community has been focused on
bringing both phases of this end-to-end pipeline together, so that data scientists can work
with a single Spark cluster and avoid the penalty of moving data between phases via an
external data lake. Horovod (by Uber) and TensorFlowOnSpark (by Yahoo) are examples of this
approach.

Spark 3.x represents a key milestone, as Spark can now schedule GPU-accelerated ML and
DL applications on Spark clusters with GPUs. The complete Spark 3 software stack that
includes the RAPIDS Accelerator for Apache Spark is shown in the following figure.
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DISTRIBUTED, SCALE-OUT DATA SCIENCE AND Al APPLICATIONS

END-TO-END APACHE SPARK 3.0 PIPELINE

ACCELERATED APACHE SPARK COMPONENTS ACCELERATED ML/DL FRAMEWORKS

Spark SQL DataFrames XGBoost TensorFlow

PyTorch Horovod

RAPIDS Accelerator for Apache Spark

RAPIDS

GPU-ACCELERATED INFRASTRUCTURE

New GPU-Accelerated Libraries on NVIDIA
CUDA

As discussed previously, NVIDIA® CUDA® is a programming model and a set of APIs for
accelerating operations on the NVIDIA GPU architecture. Layered on top of CUDA, RAPIDS is a
suite of open-source software libraries and APls that provide GPU parallelism and high-
bandwidth memory speed through DataFrame and graph operations.

RAPIDS GPU-Accelerated Spark DataFrames

RAPIDS offers a powerful GPU DataFrame based on Apache Arrow data structures. Arrow
specifies a standardized, language-independent, columnar memory format, optimized for data
locality, to accelerate analytical processing performance on modern CPUs or GPUs. With the
GPU DataFrame, batches of column values from multiple records take advantage of modern
GPU designs and accelerate reading, queries, and writing.
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SELECT * FROM clickstream
WHERE session_id = 1331246351

Intel CPU

Spark GPU-Accelerated DataFrame and SQL

For Apache Spark 3.0, new RAPIDS APIs are used by Spark SQL and DataFrames for GPU-
accelerated memory-efficient columnar data processing and query plans. With the RAPIDS
accelerator, the Catalyst query optimizer plugin interface has been extended to identify
operators within a query plan that can be accelerated with the RAPIDS API, mostly a one-to-
one mapping, and to schedule those operators on GPUs within the Spark cluster when
executing the query plan.

With a physical plan for CPUs, the DataFrame data is transformed into RDD row format and
usually processed one row at a time. Spark supports columnar batch, but in Spark 2.x only the
Vectorized Parquet and ORC readers use it. The RAPIDS plugin extends columnar batch
processing on GPUs to most Spark operations. Processing columnar data is much more GPU
friendly than row-by-row processing.
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QUERY
SELECT product_id, ds,
max(price) - min(price) AS
range FROM bar GROUP BY
product_id, ds

bar.groupBy(
col(”product_id”),
col(“ds™))

-agg(
max(col(“price”)) -

min(col(“price”)).alias(“range”))

DataFrame

RAPIDS SQL
Plugin

Logical Plan

GPU Physical Plan Physical Plan

RDD[ColumnarBatch] RDD[InternalRow]

A new Spark shuffle implementation built upon OpenUCX communication libraries leverage
NVLink, RDMA and InfiniBand (if available) to dramatically reduce data transfer among Spark
processes by: keeping as much data on the GPU as possible, finding the fastest path to move
data between nodes, using the best of available hardware resources, including bypassing the
CPU to do GPU to GPU memory intra and inter node transfers. RDMA allows GPUs to transfer
data directly across nodes at up to PCle speeds, operating as if on one massive server.
NVLink allows GPUs to initiate peer to peer communication at up to 300GB/s.

DISTRIBUTED SCALE-OUT SPARK APPLICATIONS

APACHE SPARK CORE
L ] e [EZEETE

if gpu_enabled(operation, data_type) e Custom Implementation of Spark

call-out to RAPIDS Shuffle
RAPIDS Accelerator e Optimized to use RDMA and GPU-to-

for Spark GPU direct communication

else
execute standard Spark operation

JNI bindings JNI bindings
Mapping From Java/Scala to C++ Mapping From Java/Scala to C++

RAPIDS C++ Libraries UCX Libraries
CUDA

Leveraging NVIDIA GPUs to Power the Next Era of Analytics and Al WP-09926-001_v02 | 43



Accelerating Apache Spark 3 Chapter 3: GPU-Accelerated Apache Spark 3.x

GPU-Aware Scheduling in Spark

GPUs are now a schedulable resource in Apache Spark 3.0. This allows Spark to schedule
executors with a specified number of GPUs, and you can specify how many GPUs each task
requires. Spark conveys these resource requests to the underlying cluster manager,
Kubernetes, YARN, or standalone. You can also configure a discovery script to detect which
GPUs were assigned by the cluster manager. This makes GPUs easier to request and use for
Spark application developers, allows for closer integration with DL and Al frameworks like
Horovod and TensorFlow on Spark, and allows for better utilization of GPUs. This greatly
simplifies running ML or DL applications that need GPUs, as you previously had to work
around the lack of GPU scheduling in Spark applications.

An example of a flow for GPU scheduling is shown in the diagram below. The user submits an
application with a GPU resource configuration discovery script. Spark starts the driver, which
uses the configuration to pass on to the cluster manager, to request a container with a
specified amount of resources and GPUs. The cluster manager returns the container. Spark
launches the container. When the executor starts, it will run the discovery script. Spark sends
that information back to the driver and the driver can then use that information to schedule
tasks to GPUs.

GPU Scheduling

SPARK APPLICATION
SPARK DRIVER TASK CODE
Request Executor Assign Pass GPU
© Executor Spark Registers GPU(s) and LEREIEE addrs to
. Launches . user gets GPU
pp Containers Executor with GPU Launch addr assigned TensorFlow or
w/GPU(s) adds Tasks J other Al algo
N 7 A
AN / >

v N\ /
\ Node _/

Executor I

CPU

Stage Level Scheduling in Spark

Recall from the overview of How a Spark Application Executes, page 20, the scheduler splits
the physical plan DAG into stages, based on what operations can be performed serially or in
parallel, then the scheduler submits the stage task set to the task scheduler, which sends
tasks to the executors to run.
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Worker Node

Executor

Waorker Node

Executor
Cache

Spark 3.1 and newer stage level resource scheduling allows you to use different executor
resources for different stages of your job, adapted to the workload type. For example, CPUs
and memory-intensive executors for first stage data processing, and GPUs in a second phase
for ML.

Worker Node
Worker Node

=4 | Executor

Partition

Worker Mode

b | Executor

Stage level scheduling extends upon accelerator aware scheduling by improving big data ETL
and DL integration and also enables multiple other use cases. It is beneficial any time the
user wants to change container resources between stages in a single Apache Spark
application, whether those resources are CPU, Memory or GPUs. One of the most popular use
cases is enabling end-to-end scalable Deep Learning to efficiently use GPU resources. In this
type of use case, users read from a distributed file system, do data transformations to get the
data into a format that the Deep Learning algorithm needs for training or inference and then
send the data into a Deep Learning algorithm. Using stage level scheduling combined with
accelerator aware scheduling enables users to seamlessly go from ETL to Deep Learning
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running on the GPU by adjusting the container resource requirements for different stages in
Spark within the same application.

This makes writing these applications easier and can help with hardware utilization and costs.
There are other ETL use cases where users want to change CPU and memory resources
between stages, for instance when there is data skew or when the data size is much larger in
certain stages of the application.

Using the Spark Web Ul to Monitor GPU Resources

Recall from the overview Using Spark Web Ul to Monitor Spark SQL, page 36, the Executors
tab displays summary information about the executors that were created for the application.
You can use the Resources checkbox in this tab to see which resources have been allocated. In
this example, two GPUs have been allocated.

Spotiz i . . Executor Spark shell apy

Executors

+ RODBlocks  StorageMemory  DiskUsed  Cores  ActiveTasks  Failed Tasks  Complete Tasks  TotalTasks  TaskTime(GCTime)  Input  ShuffleRead  ShuffleWrite  Blacklisted
Active(2) © 00B/87G8 0os 2 0 0 0 0 0.0 ms (0.0 ms) 008 008 oos 0
Dead(0) © 008/008 008 ¢ [ 0 0 0 ( 008 008 008
Total(2) 0 ooB/87G8 008 2 0 o 0 0 008 oo0s8 oos 4]
Executors
Show  2( - entres Search
Executor RDD Storage Disk Active Failed Complete Total Task Time (GC Shuffie Shuffle Thread
o + Address Status  Blocks Memory Used Cores Resources Tasks Tasks Tasks Tasks Time) Input  Read Write Logs Dump
driver 10.28.9.112:42305 Actve 0 00B/84GB 008 0 0 0 0 0 00 ms (0.0 ms) 008 008 008

1 1omg-x299:37047  Actve 0 008/366.3 oos 2 gpu: [0, 1] 0 0 0 0 00ms(00ms) 008 008 008
M8

For executors configured with stage level scheduling, the Resource Profile Id checkbox
displays the profile id number of each executor.

Resources
Resource Profile Id —

Summary
+ RDD Blocks Storage Memory Disk Used Cores Active Tasks Failed Tasks Complet
Active|&) o 21.5 KiB f 43.7 GiB 008 12 o 1]} 4
Dead(1) 1] 008/ 21.2 GiB 008 2 o 1} a
Total(7) o 21.5 KiB [ 64.9 GiB 0oB 20 D 0 a
Executors

Show | 20 + entries

Executor RDD Storage Disk Resource
[[+] i Mddress Status  Blocks Memory Used Cores Resources  Profile Id
driver Active 4] 7.2 Ki [ 10.6 00B Q 1]

[=]]z]
1 _ Dead [ 006212 GIE 0OB 2 gpu: [0] o

Leveraging NVIDIA GPUs to Power the Next Era of Analytics and Al WP-09926-001_v02 | 46



Accelerating Apache Spark 3

By selecting the Environment tab, you can see the executor and task requirements associated
with each resource profile id.

[Resource Profile Id Resource Profile Contents

i}

Executor Regs:

cores: [amount: 1]

memory: [amount: d2968]

affHeap: [amount: 2]

gpu: [amoust: 1, discevery: ./petGpus]
Task Regs:

cpus: [ampant: 1.8]

gou: [amsuat: 8.5]

Exgcutor Reqs:

nemorylverbend: [anount: 2048]

cores: [ampunt: 4

nemory: [amount: G144]

gou: [amount: 2, discovery: o/getGpus]
Task Regs:

cpus: [anoant: 4.8]

gouz [amouat: 2.8]

XGBoost, RAPIDS, and Spark

XGBoost is a scalable, distributed gradient-boosted decision tree (GBDT) ML library. XGBoost
provides parallel tree boosting and is the leading ML library for regression, classification, and
ranking problems. The RAPIDS team works closely with the Distributed Machine Learning
Common (DMLC) XGBoost organization, and XGBoost now includes seamless, drop-in GPU
acceleration, significantly speeding up model training and improving accuracy for better
predictions.

RAPIDS, XGBOOST, and SPARK has three features that help with speed-up and cost:

>

GPU-accelerated DataFrame: Reads any number/size of supported input file formats
directly into GPU memory and divides up evenly among the different training nodes.

GPU-accelerated training: XGBoost training time has been improved with a dynamic in-
memory representation of the training data that optimally stores features based on the
sparsity of a dataset. This replaces a fixed in-memory representation based on the largest
number of features amongst different training instances.

Efficient GPU memory utilization: XGBoost requires that data fit into memory which
creates a restriction on data size using either a single GPU or distributed multi-GPU multi-
node training. The latest release has improved GPU memory utilization by 5X. Now users
can train with data that is five times the size as compared to the first version. This
improves total cost of training without impacting performance.

Later in this eBook, we explore and discuss an example using the upgraded XGBoost library to
load/transform data and conduct distributed training using GPUs.
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Other Spark 3.x Features

> Adaptive Query execution: Spark 2.2 added cost-based optimization to the existing rule

based SQL Optimizer. Spark 3.0 now has runtime adaptive query execution(AQE]. With AQE,
runtime statistics retrieved from completed stages of the query plan are used to re-

optimize the execution plan of the remaining query stages. Databricks benchmarks yielded
speed-ups ranging from 1.1x to 8x when using AQE.

saL Parser Analyzer Optimizer Planner Query Execution
.%3 H
PETRE f Physica' Selected
Dataset Unr'esolved Logical Plan Op.t:mlzed Pl = Physical —»{ RDDs
Logical Plan T’ T Logical Plan ans = Plans
A S i
DataF Metadata | : Cache v
i Catalog Manager Adaptive Query Execution

Spark 3.0 AQE optimization features include:

« Dynamically coalesce shuffle partitions: AQE can combine adjacent small partitions

into bigger partitions in the shuffle stage by looking at the shuffle file statistics,
reducing the number of tasks for query aggregations.

Observe
result size

Shuffie (50 part)

.............

Stage 1 Stage 1

Dynamically switch join strategies: AQE can optimize the join strategy at runtime based
on the join relation size. For example, converting a sort merge join to a broadcast hash
join which performs better if one side of the join is small enough to fit in memory.
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Change join algorithm

............

............

Sort Merge Joln | Execute Sort Merga Jaln i Optimize >
T — A 5
Stage 1 Stage 1 Stage 1
Estimate Actual Actual
size: Stage 2 size: Stage 2 size: Stage 2
100MB B5MB BEMB
Estimate Actual Actual

size: size: size:
JoMB 8MB 8MB

o Dynamically optimize skew joins: AQE can detect data skew in sort-merge join partition
sizes using runtime statistics and split skew partitions into smaller sub-partitions.

» Dynamic Partition Pruning: Partition pruning is a performance optimization that limits the
number of files and partitions that Spark reads when querying. After partitioning the data,
queries that match certain partition filter criteria improve performance by allowing Spark
to only read a subset of the directories and files. Spark 3.0 dynamic partition pruning
allows the Spark engine to dynamically infer, at runtime, the specific partitions within a
table that need to be read and processed for a specific query, by identifying the partition
column values that result from filtering another table in a join. For example, the following
query involves two tables: the flight_sales table that contains all of the total sales for all
flights, partitioned by originating airport, and the flight_airports table that contains a
mapping of airports for each region. Here we are querying for sales in the North-East
America region.

select fs.airport, fs.total sales
from flight sales fs, flight airports fa
where fs.airport = fa.airport and fa.region = 'NEUSA'

/
= =
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With dynamic partition pruning, this query will scan and process only the partitions for the
airports returned by the where filter on the region. Reducing the amount of data read and
processed results in a significant time savings.

» Join strategy hints instruct the optimizer to use the hinted plan for join strategies. MERGE,
SHUFFLE_HASH and SHUFFLE_REPLICATE_NL hints were added to the existing
BROADCAST hint.

» DataSource APl Improvements:

o Pluggable catalog integration.

o Improved predicate push down for faster queries via reduced data loading.

Spark 3.x CPU vs. GPU Performance

Comparisons

For Spark 3.x CPU vs. GPU performance comparisons, the NVIDIA RAPIDS Accelerator team
uses NVIDIA Decision Support [NDS), a NVIDIA adaptation of an industry-standard data
science benchmark often used by Apache Spark customers and providers. NDS consists of the
same 100+ SQL queries as the industry standard benchmark, designed to mimic large-scale
ETL from a retail or company, but parts have been modified for dataset generation and
execution. This performance comparison was performed on cluster configurations shown in
the table below, with approximately 3 TB of raw data compressed and partitioned using
Parquet to 1 TB stored in the native file system for the cluster ([HDFS, GCFS, or the local file

system):

Nodes

CPU

GPU

RAM

Storage
Networking

Cost w/o GPU
Cost w/ GPU

Software

c

fé‘l‘g -y N

g \!-"A
ar v

EGX / NVIDIA Certified
OEM servers

8

2 x AMD EPYC 7452
(64 cores/ 128 threads)

2 x NVIDIA Ampere A100, PCle,
250W, 40GB

0.5TB
4 x 7.68 TB Gen4 U.2 NVMe

1 x Mellanox CX-6 Single Port
HDR100 QSFP56

~$42,000 per w/ bulk discount
~$71,000 per w/ bulk discount

HDFS (Hadoop 3.2.1)
Spark 3.0.2 (stand alone)

DGX A100
1
2 x AMD Rome 7742
(128 cores/256 threads)

8 x NVIDIA Ampere A100 40GB

278
8 x 3.84 TB Gen4 U.2 NVMe

8 x Mellanox CX-6 Single Port HDR
200Gb/s InfiniBand

N/A
Approximately $239,000 retail

Spark 3.0.2 (stand alone)
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&) Google Cloud

>
GCP Dataproc

1 driver (CPU only), 8 workers

n1-standard-4 (driver)
8 x n1-highmem-16 (workers)

1 x 16GB T4 per executor

104 GB
Google Cloud Storage

32 Gbps

$9.08/hour incl GCE + Dataproc
$11.88/hour incl GCE + Dataproc

Dataproc Spark 3.0.1 + YARN
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The following graphs shows the results of this performance comparison. For the EGX 8-Node
Cluster, the GPU is 3.21x faster, and the GPU cost is 52% that of the CPU. For the DGX A100
server, the GPU is 2.19x faster, there is no cost ratio, since these are not sold without a GPU.
On GCP Dataproc, the GPU is 1.91x faster with a cost ratio of 0.68.

EGX 8-Node Cluster DGX A100 GCP Dataproc
6,000 6,000 6,000
s
5,000 5,000 5,000
« 4,000 ., 4,000 ., 4,000
2 2 2
S 3,000 S 3,000 § 3,000
8 2,000 4 2,000 & 2,000
1,000 - 1,000 1,000
0 0 0
CPU GPU CPU GPU CPU GPU
GPU is 3.21x faster with a cost ratio of 0.52 GPU is 2.19x faster GPU is 1.91x faster with a cost ratio of 0.68
(GPU cost was 52% that of the CPU) (no cost ratio, we don’t sell these without a GPU)

GPUs are not a silver bullet, they are not going to solve all problems for all queries, the
following Spark workloads don't accelerate well:

» Small Data Sizes (spark.sql.adaptive.advisoryPartitionSizelnBytes=1G])
Very Small Aggregate Results
Complex user-defined functions

Row-wise processing (Lack of GPU support)

vV v vy

Host/Device Memory Transfers

Whereas the following Spark workloads accelerate really well:
Group by (aggregate) operations with high cardinality
Joins with a high cardinality

Sorts with a high cardinality

Window operations, especially for large windows
Column-wise operations

Complicated processing

Writing Parquet/ORC

Reading CSV

Transcoding (reading an input file and doing minimal processing before writing it out
again, possibly in a different format, like CSV to Parquet)

vV vV v vV v vV vV VY

Large Amount Very Less
9 Complicated Cache Coherent
Data .
Query Processing
AN v
~
Go GPU !
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GPUs can be truly amazing in a lot of cases. If you have high cardinality data; that is, if you're
doing very big Joins, very big Aggregates, crazy Sorts, the GPU can go at insane speeds
compared to what the CPU can do. If the window that you're operating on is bigger than the
CPU cache, for say a Sort or Join, you're definitely going to be able to beat it on the GPU.

As for Window operations, if you're doing processing on large windows, the GPU can
completely destroy the CPU in many cases. GPUs are able to process those much faster
Aggregations with lots of distinct operations than the CPU can.

Complicated processing is another thing that GPUs do really really well. For example, writing
out to Parquet or ORC, is not not only complex, it's incredibly expensive because the system is
doing all kinds of compression. There are risks of deduplication and other statistics involved in
getting the size of those files as small as possible. In some cases, there is a 20X speed up by
writing to Parquet or ORC on a GPU compared with a CPU, which is going to save both time
and money. Parsing CSV can also be very expensive. Some really smart people have spent a
lot of time figuring out how to do that in a really parallel way, and the GPU is able to beat the
CPU in most cases.

Why is the GPU really fast? The image below shows why the GPU can be amazingly fast in a lot
of cases. Spark on the CPU relies on task level parallelism, where all the data is split up
between tasks, and each core on the CPU processes only one task until it is done, then it goes
to another task not assigned to a core. The GPU does task and data level parallelism, it
processes all the data for a task at once completely, not one piece at a time. Data parallelism
is cooperative and uses a more consistent amount of memory. For operations that benefit
from cooperation such as groupby or sort, being able to process all the data at once in parallel
is faster. Because there are fewer tasks, it also reduces the total data in memory, which
results in less spilling. Data parallelism also helps with skewed data sets, where you have one
task that needs to be larger than other tasks.

CPU GPU
Data _ Data
Task 1 —
— Task 1 <
Task 2 —
= N
Task 3 — —
Task 2 < —
Task 4 — —
= h —

Task Level Parallelism vs Data Level Parallelism

For more information see Running Large-Scale ETL Benchmarks with GPU-Accelerated
Apache Spark Video.

Leveraging NVIDIA GPUs to Power the Next Era of Analytics and Al WP-09926-001_v02 | 52


https://gtc21.event.nvidia.com/media/Running%20Large-Scale%20ETL%20Benchmarks%20with%20GPU-Accelerated%20Apache%20Spark%20%5BS31846%5D/1_fzcd1fvf
https://gtc21.event.nvidia.com/media/Running%20Large-Scale%20ETL%20Benchmarks%20with%20GPU-Accelerated%20Apache%20Spark%20%5BS31846%5D/1_fzcd1fvf

Accelerating Apache Spark 3 Chapter 3: GPU-Accelerated Apache Spark 3.x

Summary

In this chapter, we covered the main improvements in Spark 3.x that are proving instrumental
in accelerating time to insights, especially when executed on NVIDIA GPUs.
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In the previous chapter, we discussed the features of GPU-Acceleration in Spark 3.x. In this
chapter, we go over the basics of getting started using the new RAPIDS Accelerator for Apache
Spark 3.x that leverages GPUs to accelerate processing via the RAPIDS libraries (For details
refer to the Getting Started with the RAPIDS Accelerator for Apache Spark].

The RAPIDS Accelerator for Apache Spark has the following features and limitations:
» Allows running Spark SQL on a GPU with Columnar processing

» Requires no APl changes from the user

» Handles transitioning from Row to Columnar and back

>

Runs supported SQL operations on the GPU, If an operation is not implemented or not
compatible with GPU, it will fall back to using the Spark CPU version.

> The accelerator library also provides an implementation of Spark’s shuffle that can
leverage UCX to optimize GPU data transfers, keeping as much data on the GPU as
possible and bypassing the CPU to do GPU to GPU transfers.

» The RAPIDS Accelerator cannot accelerate operations that manipulate RDDs directly.

The RAPIDS Accelerator supports the DataFrame APl which is implemented in Spark as
Dataset[Row]. When using custom classes or types with Dataset, it is likely most query
operations will not be performed on the GPU.
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Accelerated Spark Platforms

NVIDIA worked with the Apache Spark Community, Databricks, Google, AWS, Cloudera, and
Microsoft to offer GPU acceleration on all leading Spark platforms, making it easy and cost-
effective to launch scalable Apache Spark clusters with NVIDIA GPU acceleration. GPU
accelerated Spark offers the following benefits:

» Data processing, queries and model training are completed faster, allowing accelerated
time to insight.

» The same GPU-accelerated infrastructure can be used for both Spark and ML/DL
frameworks, eliminating the need for complex decision making and tuning.

» Fewer compute nodes are required; reducing infrastructure cost and potentially helping
avoid scale-related problems.

Next, we give an overview of the leading Spark platforms that support NVIDIA GPU
acceleration. (Spark can also be run on-premises with the RAPIDS software and RAPIDS
Accelerator for Spark being available directly from NVIDIA.)

Databricks

From the original creators of Apache Spark, the Databricks Lakehouse Platform is a fully
managed cloud platform for massive scale data engineering and collaborative data science.
The Databricks Lakehouse Platform offers:

» Collaborative environment for data teams to build solutions together with integrated
workflows, and enterprise security.

> Interactive notebooks to use Apache SparkTM, SQL, Python, Scala, Delta Lake, MLflow,
TensorFlow, Keras, Scikit-learn and more.

» Runs on every major public cloud, tightly integrated with the security, compute, storage,
analytics, and Al services natively offered by the cloud providers.

> Data storage in low cost cloud object stores such as AWS S3, and Azure Data Lake
Storage, and Google Cloud Storage.
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Databricks Workspace

Collaborative Notebooks, Production Jobs

Databricks Runtime

APACHE

Spr K PyTorch ml

DELTA LAKE

Databricks Cloud Service

3 =53 =3 W

Google Cloud Dataproc is a managed cloud service for running Apache Spark and Apache
Hadoop clusters in addition to other open source software of the extended Hadoop ecosystem.
Dataproc combines the best software in the open-source ecosystem with the advantages of
Google Cloud infrastructure making open-source analytics and data processing fast, easy, and
more secure in the cloud.

Taking the best of open source And opening up access to the best of GCP
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Features of Dataproc include:
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Fully managed Apache Spark 3, built on top of Yarn or Kubernetes.
Fully customizable compute resources - VMs, GPUs, RAM.
Customizable 0SS components including GPU drivers and NVIDIA RAPIDS.

Spin up a cluster with auto scaling to dynamically change the computing power of the
cluster.

vV v vy

» Only pay for the resources you use.

Google Cloud Platform’s Customizable machines
fully-managed Apache Spark w/ NVIDIA GPUs
and Apache Hadoop service (P100, V100, T4, P4, K80)

Ephemeral clusters

Rapid cluster creation
on-demand

Tightly Integrated
with other Google Cloud
Platform services

Familiar open source tools

» Encryption and unified security built into every cluster.

> Integrates seamlessly with BigQuery and other Google Cloud services using open source
connectors.

» 0SS support via optional components and initialization actions.
» Managed notebook environments using Dataproc Hub.
» Easyaccess to web Uls using a component gateway

You can use Dataproc for preprocessing your data using Apache Spark and then use that same
Spark cluster to power your Notebook for machine learning. The machine learning
initialization action provides a set of commonly used libraries to reduce the time spent
configuring your cluster for machine learning including:

» Python packages such as TensorFlow, PyTorch, MxNet, Scikit-learn and Keras.

» R packages including XGBoost, Caret, randomForest, sparklyr.
» Dask and Dask-Yarn.
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ACCELERATED DATA AMALYTICS ACCELERATED DATA SCIEMCE

SPARK

RAPIDS

cuML cuGraph

CUDA-X Al

cuDNN TensorRT

NVIDIA MAGNUM 10
Transport Protocol | System Interconnect | Hetwork Topology | Storage | Filesystems | UCX

AWS

Amazon EMR is a managed cluster platform that simplifies running big data frameworks, such
as Apache Spark, on AWS to process and analyze vast amounts of data. With EMR release
version 6.2.0 and later, you can quickly and easily create scalable and secure clusters with
Apache Spark 3.x, the RAPIDS Accelerator, and NVIDIA GPU-powered Amazon EC2 instances
with a few clicks on the EMR console. With EMR’s per-second billing and Spot Instances, you
can easily run data science pipelines at a massive scale but low cost. Additionally, you can use
AWS data stores, Amazon SageMaker, open-source DL and ML tools such as TensorFlow and
Apache MXNet, Apache Zeppelin, or Jupyter notebooks, and Apache Livy to enable data
scientists to easily and quickly build ETL and ML pipelines and move ML models into
production.

Data: $3 bucket

EMR Amazon EC2

\_ o,
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Cloudera

Cloudera Data Platform (CDP) is a software framework that provides big data management
and analytics services for enterprises across hybrid public cloud, private cloud, and multi-
cloud environments. CDP can manage data and data workloads, spin or scale the necessary
cluster infrastructure and software up and down on-demand, and do that on-premises as well
as across the three major public clouds. CDP enables structuring and optimizing data and
data processing where they are best suited and allows existing on-prem implementations to
“burst to the cloud” for scaling and performance.

CDP - HYBRID / MULTI-CLOUD DATA PLATFORM

=] = s ~C6 -
Real-time o-O0 fg_éf} S % ;@ =" -0 Patt Analysts
o = = — Oo- N
Batch Dat: D! Virtual D. e s oo : Engineers
ata ata irtual ata Operational treaming Machine Dat; : :
Structured Collection | | Engineering | | DataLake | | Warehouse | | Database | | Analytics Loaming | | Visualization Scientists
Unstructured Developers
Data SDX Data
Sources Users
Cloudera Data Platform
aWs D Google Cloud CLOUDZRA
3"
Oo A\ Azure @Redhat SDX
Data Lifecycle Hybrid & Multi- Secure & Open &
integration for better Cloud to leverage Governed to Extensible to
user productivity and existing investments simplify data support more use
faster time to value and reduce risk protection, sharing cases faster and at
and compliance lower cost

RAPIDS integration with ML/DL frameworks and Spark 3.x GPU task scheduling enables the
acceleration of model training and tuning. This allows data scientists and ML engineers to
have a unified, GPU-accelerated pipeline for ETL and analytics, while ML and DL applications
leverage the same GPU infrastructure, removing bottlenecks, increasing performance, and
simplifying clusters. For IT teams, the simplest infrastructure path to enabling this
accelerated data science is to deploy NVIDIA Certified Servers.

PREDICTION A INSIGHTS:

RAW DATA: DATA PROCESSING ( DATA ANALYTICS '[ MACHINE LEARNING

LOGS —— | | DATA [ wstorca | [ erepicve ) DEEF 1| r INFERENCE SERVICE 1 APPLICATIONS
IMAGES | PREFARATION | AMALYTICS 1} ANALYTICS LEARNING L REPORTS
TEXT : — 2\ o AN . | (= - APIS
DATABASES | ( MODEL REFOSTTORY
SENSORS STREAMING il |
MODEL SCORING .-’:

APACHE SPARK ECOSYSTEM

PYDATA ECOSYSTEM
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CDP Powered by NVIDIA Accelerated Data Science

While effectively leveraging GPUs to accelerate end-to-end ETL and ML workflows with GPUs
has been difficult in the past, enabling this capability on CDP powered by NVIDIA is turn-key.
Cloudera, together with NVIDIA, makes it easier than ever to optimize data science workflows
and execute compute-heavy processes in a fraction of the time previously required.

Cloudera-NVIDIA partnership

data scientists data scientists and ML engineers

codifying data federation,
problemand P cleaning,and »
setting metrics labeling

model selection, continuous
training,and >
tuning

.t

feature

validation, > production
engineering

simulation deployment »  monitoring and

validation

data engineers ' developers and ops engineers

business analysts

Cloudera Data Platform Base
Cloudera Data Platform Experiences

Cloudera Data Platform Public Cloud
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Azure Synapse is a large-scale analytics service, cohesively combining the convenience of data
integration, data warehousing, and big data analytics capabilities. Azure Synapse enables
developers, data engineers, and data scientists to work with large volumes of data on multiple
levels and helps ingest, explore, prepare, manage, and serve data. Azure Synapse offers:

Data processing engines: Apache Spark pool, Serverless SQL pool, Dedicated SQL pool.

Separation of storage and compute.

No-copy data sharing from Azure Cosmos DB via Azure Synapse Link.

Machine learning with Azure Machine Learning, Cognitive Services, Apache Spark MLLib,
or Microsoft Machine Learning for Apache Spark (mmlspark].

Data governance and data cataloging with Azure Purview.

Integration with Azure Data Factory for end-to-end workflows, data movement, and
creating automatable data pipelines.

Azure Synapse

Limitless analytics service with unmatched time to insight

E H Unified experience '5’{
—_—

On-premises data Azure Synapse Studio Azure Data

iegraten m
—

Share

f

Cloud data Azure Machine

Analytics runtimes Learning

spans
SaaS data

Power Bl

Azure Data Lake Storage

Streaming data
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With Apache Spark™ deployments tuned for NVIDIA GPUs, plus pre-installed libraries, Azure
Synapse Analytics offers a simple way to leverage GPUs to power a variety of data processing
and machine learning tasks. With built-in support for NVIDIA's RAPIDS acceleration, the Azure
Synapse version of GPU-accelerated Spark offers gains of 2x on standard analytical
benchmarks compared to running on CPUs, all without any code changes. Additionally, for
machine learning workloads Azure Synapse offers Microsoft's Hummingbird out-of-box which
can leverage these GPUs to offer significant acceleration on traditional ML workloads.

This GPU acceleration feature in Azure Synapse is available for private preview by request.

Spark Data Prep & ML Stack in Azure Synapse

RAPIDS Accelerator is an open-sourced NVIDIA library for
Spark 3.0 that accelerates:

: . Distributed, scale-out data science and Al applications
End-to-end data preparation and model training on the same

Spark cluster.

* Spark SQL and DataFrame operations without requiring any code END-TO- END APACHE SPARK.0 PIPELINE

changes. Accelerated Apache Spark components Accelerated ML frameworks

* Data transfer performance across nodes (Shuffle optimization).
XGBoost TensorFlow = Hummingbird

i i H Spark sQL DataFi S
The RAPIDS suite of open-source software libraries and APIs s ataframe

gives you ability to execute end-to-end data science and

& 2 x < PyTorch Horovod Petastorm
analytics pipelines entirely on GPUs yTort orovo! orm

= RAPIDS Ecosystem
Parallel computing platform and programming model, that —> CUDA + CUDA libraries
simplifies using a GPU for general purpose computing. e ]

* CUDA extensions allow regular C, C++ developers to expressive
massive parallelism towards GPUs. Base Synapse VHD (Ubuntu 18.04)

+  Utilizes NVIDIA CUDA primitives for low-level compute
optimization, and exposes GPU parallelism and high-bandwidth
memory speed

* Includes data preparation tasks, DataFrame API for end-to-end
pipeline accelerations.

NVIDIA has worked with the Alluxio community to test a high-performance data orchestration
system for caching large datasets and data availability for GPU processing. Apache Spark 3.x,
the RAPIDS Accelerator for Apache Spark, and Alluxio can be used both for:

Data analytics and business intelligence.

Data preprocessing and feature engineering for data science.

For model training or inference, Spark and distributed TensorFlow or PyTorch on GPU
clusters all benefit from I/0 acceleration using a distributed platform-agnostic
orchestration layer.

Alluxio’s data orchestration layer can be used as a distributed cache for multiple data sources
shared across multiple steps of a data pipeline. Alluxio is agnostic to the platform, whether it's
managed YARN or Kubernetes on-premises or in the cloud.
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INGEST, ETL, ANALYTICS MODEL TRAINING

NVIDIA GPU Powered Cluster ‘

e OR '::‘iﬁl&:&l S3 or oo MINIO

Apache Spark 3.x with RAPIDS Accelerator for Apache Spark is able to parallelize computation
of a Spark SQL or DataFrame job on a GPU-accelerated cluster. However, a significant portion
of such a job is reading the data from a remote data source. If data access is slow, I/0 can
dominate the end-to-end application runtime.
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Using Alluxio as a data source for Spark applications requires no code changes to benefit from
I/0 acceleration using the data orchestration layer. The recommended software stack on GPU
enabled instances is shown below, with Alluxio utilizing CPUs and local storage media such as
NVMe for managing cached data while Spark utilizes GPU resources for computation.

SPARK FOR ETL AND ANALYTICS

I

I

I

- |
§ : RAPIDS Accelerator for Spark :
o I
© RAPIDS ‘ :
Q I
GPU ‘ :

The NVIDIA Decision Support (NDS) dataset and queries derived from a popular data analytics
benchmark suite were used for an evaluation of GPU processing with RAPIDS Accelerator for
Apache Spark and Alluxio. These benchmark queries operated on a 3 Terabyte (TB) dataset in
Parquet format stored in a Google Cloud Storage bucket.

The following charts show that an NVIDIA GPU cluster with Alluxio has a nearly 2x
improvement in performance when comparing the total elapsed time across the 90 NDS
queries, and 70% better return on investment (ROI) compared to a CPU cluster. Google Cloud
Dataproc was used to deploy services on compute instances for both CPU and GPU clusters.

RAPIDS Ac + Alluxio Perf on Google Cloud Dataproc RAPIDS Accelerator + Alluxio Cost Savings on Google Cloud Dataproc
$12.49

95.8

750

$10.00
$7.46
500
334

$500

250
0.0 . — $0.00

CPU

CPU  NVIDIA GPU+Alluxio NVIDIA GPU+Alluxio

NVIDIA Decision Support Benchmark Queries NVIDIA Decision Support Benchmark Queries

Total Query Time (mins)
Total Cost

CPU Hardware Config: Master: n1-standard-4, Slave:4 x n1-standard-32 (128 cores, 480GB RAM), GPU Hardware
Config: Master: n1-standard-4, Slave:4 x n1-standard-32 (128 cores, 480GB RAM + 16 x T4}, CPU Cloud Costs:
$7.82/hr [Based on standard pricing on 4 x n1-standard-32 + Dataproc Pricing), GPU Cloud Costs: $13.41/hr (Based
on standard pricing on 4 x n1-standard-32 + 16 xT4 + DataProc Pricing)
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Most of these improvements can be attributed to Alluxio’s ability to cache the large datasets,
and thereby eliminate the need for repeated access to cloud storage. Data scientists who
perform multiple tasks across the data science life cycle such as data ingestion, data
preparation and data exploration can benefit from increased data processing capabilities to
improve performance and reduce costs.

For information on how to set up the RAPIDS Accelerator for Apache Spark 3.x on Databricks,
Google, AWS, Alluxio, on Premise YARN or Kubernetes see Getting-Started - spark-rapids. For
Cloudera and Azure Synapse, see the provider documentation.

Configuration

The Spark shell and ./bin/spark-submit support loading configuration properties dynamically,
via command line options, such as --conf, or by reading configuration options from
conf/spark-defaults.conf. [Refer to the Spark Configuration Guide for an overview and details
on Spark configurations. )

On startup use: --conf [conf keyl=[conf value]. For example:

S{SPARK HOME}/bin/spark --jars 'rapids-4-spark 2.12-0.5.0.jar,cudf-0.19.2-
cudalO-1.jar"' \

-—-conf spark.plugins=com.nvidia.spark.SQLPlugin \
--conf spark.rapids.sqgl.incompatibleOps.enabled=true

At runtime use: spark.conf.set ("[conf keyl", [conf valuel).Forexample:

scala> spark.conf.set ("spark.rapids.sqgl.incompatibleOps.enabled", true)

All configs can be set on startup, but some configs, especially for shuffle, will not work if they
are set at runtime.

GPU Scheduling

You can use --conf key value pairs to request GPUs and assign them to tasks. The exact
configuration you use will vary depending on your cluster manager. Here are a few of the
configuration key value properties for assigning GPUs:

» Request your executor to have a GPU. The executor can only use one GPU, so this value
should always be 1:
—--conf spark.executor.resource.gpu.amount=1

> Specify the number of GPUs per task:
—--conf spark.task.resource.gpu.amount=1

» Specify a GPU discovery script (required on YARN and K8SJ:

-—-conf spark.executor.resource.gpu.discoveryScript=./getGpusResources.sh
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Note that spark.task.resource.gpu.amount can be a decimal amount, so if you want
multiple tasks to be run on an executor at the same time and assigned to the same GPU you
can set this to a decimal value less than 1. You would want this setting to correspond to the
spark.executor.cores setting. For instance, if you have spark.executor.cores=2 which
would allow two tasks to run on each executor and you want those 2 tasks to run on the same
GPU then you would set spark.task.resource.gpu.amount=0. 5.

Advanced Configuration

Beyond these configurations, we have other plugin-specific configurations that may help
performance as long as certain requirements are met. These configurations control what
operations can run on the GPU. Enabling these allows more things to be optimized and run on
the GPU. For more details on configuration refer to the RAPIDS Accelerator for Spark

Configuration.

Tuning General Recommendations

Number of Executors

The RAPIDS Accelerator plugin only supports a one-to-one mapping between GPUs and
executors.

Number of Tasks per Executor

Running multiple, concurrent tasks per executor is supported in the same manner as
standard Apache Spark. For example, if the cluster nodes each have 24 CPU cores and 4 GPUs
then setting spark.executor.cores=6 will run each executor with 6 cores and 6 concurrent

tasks per executor, assuming the default setting of one core per task, i.e.:
spark.task.cpus=1.

It is recommended to run more than one concurrent task per executor as this allows
overlapping I/0 and computation. For example one task can be communicating with a
distributed file system to fetch an input buffer while another task is decoding an input buffer
on the GPU. Configuring too many concurrent tasks on an executor can lead to excessive I/0
and overload host memory. Counter-intuitively leaving some CPU cores idle may actually
speed up your overall job. We typically find that two times the number of concurrent GPU tasks
Is a good starting point.

The_number of concurrent tasks running on a GPU is configured separately.
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Input Files

Fewer large input files are better than lots of small files. GPUs process data much more
efficiently when they have a large amount of data to process in parallel. Loading data from
fewer, large input files will perform better than loading data from many small input files.
Ideally input files should be on the order of a few gigabytes rather than megabytes or smaller.

Note that the GPU can encode Parquet and ORC data much faster than the CPU, so the costs
of writing large files can be significantly lower.

Input Partition Size

Many queries can benefit from using a larger input partition size than the default setting of
128 MB. This allows the GPU to process more data at once, amortizing overhead costs across
a larger set of data. Many queries perform better when this is set to 256MB or 512MB. Note
that setting this value too high can cause tasks to fail with GPU out of memory errors. The
configuration settings that control the input partition size depend upon the method used to
read the input data:

> DataSource APIl: spark.sqgl.files.maxPartitionBytes
> Hive API:

spark.hadoop.mapreduce.input.fileinputformat.split.minsize

For more recommmendations refer to Tuning - spark-rapids.

Monitoring Using the Physical Plan

The RAPIDS Accelerator for Spark requires no APl changes from the user, and it will replace
SQAL operations it supports with GPU operations. In order to see what operations were
replaced with GPU operations, you can print out the physical plan for a DataFrame by calling
the explain method, all of the operations prefixed with GPU take place on GPUs.

Now, compare the physical plan for a DataFrame with GPU processing for some of the same
queries we looked at in Chapter 2. In the physical plan below, the DAG consists of a
GpuBatchScan, a GpuFilter on hour, and a GpuProject (selecting columns) on hour,
fare_amount, and day_of week. With CPU processing it consisted of a FileScan, Filter, and a
Project.

// select and filter are narrow transformations

df.select ($"hour", $"fare amount").filter ($"hour" === "0.0" ).show(2)
result:
e +

|hour | fare amount |
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Fmm +
df.select ($"hour", $"fare amount").filter ($"hour" === "0.0" ).explain
result:

== Physical Plan ==
* (1) GpuColumnarToRow false<
+- !GpuProject [hour#10, fare amount#9]
+- GpuCoalesceBatches TargetSize (1000000,2147483647)
+- !GpuFilter (gpuisnotnull (hour#10) AND (hour#10 = 0.0))
+- GpuBatchScan[fare amount#9, hour#10] GpuCSVScan Location:
InMemoryFileIndex[s3a://spark-taxi-dataset/raw-small/train], ReadSchema:
struct<fare amount:double, hour:double>

Notice how most of the nodes in the original plan have been replaced with GPU versions. The
RAPIDs Accelerator inserts data format conversion nodes, like GpuColumnarToRow and
GpuRowToColumnar to convert between columnar processing for nodes that will execute on
the GPU and row processing for nodes that will execute on the CPU. If some parts of your
query did not run on the GPU, to see why set the config spark.rapids.sql.explain to
NOT_ON_GPU. The output will be logged to the driver's log or to the screen in interactive
mode.

the case, you should use the Spark Ul SQL tab to find the real GPU plan.

Note: When AQE is on, the explain plan may not show you the real GPU plan. If that is

Monitoring Using the Spark Web Ul
SQL Tab

The easiest way to see what is running on the GPU is to look at the SQL tab in the Spark Web
Ul. In the DAG diagram from the SQL Tab for the query below, we see that the physical plan
consists of a GPUBatchScan, GPUProject, GPUHashAggregate, and a GPUHashAggregate.
With CPU processing Spark performs a hash aggregation for each partition before shuffling
the data in the Exchange for the wide transformation. After the exchange, there is a hash
aggregation of the previous sub-aggregations. Note that for GPU processing the Exchange
shuffle has been avoided.

val df3 = df2.groupBy ("month") .count

.orderBy (asc ("month")) .show (5)

Leveraging NVIDIA GPUs to Power the Next Era of Analytics and Al WP-09926-001_v02 | 68


https://nvidia.github.io/spark-rapids/docs/FAQ.html#why-does-my-query-show-as-not-on-the-gpu-when-adaptive-query-execution-is-enabled

Accelerating Apache Spark 3

racHe

Spoﬂ(‘z 3.0.0-preview2 Jobs  Stages Storage

Details for Query 17

Submitted Time: 2020/04/20 19:58:19
Duration: 2 s
Succeeded Jobs: 17

GpuBatchScan

number of output columnar batches: 1

peak device memory total (min, med, max (stageld (attemptld): taskld)):

1208.5 KiB (1208.5 KiB, 1208.5 KiB, 1208.5 KiB (stage 17 (attempt 0): task 17))
number of output rows: 299,998

total time total (min, med, max (stageld (attemptld) taskld)):
1.3s(1.3s,1.3s,1 Ss(stage 17 (attempt 0): ta

buffer time total (min, med, max (stageld (attemptld) taskld)):
1.3s(1.3s,1.3s,1.3s (stage 17 (attempt 0): task 17))

GpuProject

number of output rows: 299,998

number of output columnar batches: 1

total time total (min, med, max %stageld (attem| g!tld) taskld)):
0 ms (0 ms,0ms, 0 ms (stage 7 (attempt 0): task 17))

GpuHashAggregate

number of output columnar batches: 1
number of output rows: 124
time in compute agg total (min, med, max (stageld (attemptld): taskld)):
0 ms (0 ms, 0 ms, 0 ms stage17(attem 0): tasl
total tlme total (mm, , max (stageld aﬁemptld) taskld)):
0 ms (0 ms, 0 ms, 0 ms (stage 17 (attempt 0): task 17))

GpuHashAggregate

number of output columnar batches: 1
number of output rows: 124
time in compute agg total (min, med, max (stageld (attemptld): taskld)):
0 ms (0 ms, 0 ms, 0 ms stage17(attem t 0): ta:
total tume total (mnn , max (stageld attemptld) taskld))
0 ms (0 ms, 0 ms, 0 ms (stage 17 (attempt 0): task 17))

WholeStageCodegen (1)
8 ms (8 ms, 8 ms,[8 ms (stage 17 (attempt 0): task 17))

GpuColumnarToRow
number of output rows: 124
total time total (min, med, max (stageld (attemptld): taskld)):

0 ms (0 ms, 0 ms, 0 ms (stage 17 (attempt 0): task 17))
number of input batches: 1

TakeOrderedAndProject
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Stages Tab
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You can use the stage details page to view a stage details DAG, where the blue vertices (boxes])
represent the RDDs or DataFrames and the edges (arrows between boxes) represent the
operation applied to a DataFrame. Note that since there is no shuffle, this query takes place in

one stage.

SpOliZ 3.0.0-preview2 Jobs = Stages  Storage

Details for Stage 17 (Attempt 0)

Total Time Across All Tasks: 1s
Locality Level Summary: Process local: 1
Associated Job Ids: 17

¥ DAG Visualization

Stage 17
GpuBatchScan
DataSourceRDD [831
D DD at scala:77
MapPartitionsRDD [84]
B ok scalas4
GpuProject
MapPartitionsRDD (85}
map at basicPhysicalOperators.scala:84
GpuHashAggregate
v
MapPartitionsRDD [86]
mapPartitions at aggregate.scala:179
GpuHashAggregate

v

MapPartitionsRDD [87]
mapPartitions at aggregate.scala:179

WholeStageCodegen
v

MapPartitionsRDD (88)
show at <console>:35

v
MapPartitionsRDD (89]

w at <console>:35
takeOrdered

MapPartitionsRDD [90]
chaw at la~2R

Environment

Executors

Leveraging NVIDIA GPUs to Power the Next Era of Analytics and Al

SQL

WP-09926-001_v02 | 70



Accelerating Apache Spark 3 Chapter 4: Getting Started with GPU-Accelerated Apache Spark 3

Environment Tab

You can use the Environment tab to view and check whether the GPU configuration for your
Spark properties have been set correctly, for example the
Spark.executor.resource.gpu.amount and spark.executor.resource.gpu.discoveryScript
properties. Here you can also view the System Properties classpath entries to check that the
plugin jars are in the JVM classpath.

Table 1. Spark Properties
Name Value
spark.executor.resource.gpu.amount 1

spark.executor.resource.gpu.discoveryScript | /home/ubuntu/getGpusResources.sh

Executors Tab

You can use the Executors tab to see which resources have been allocated for the executors
for your application. In this instance, one GPU has been allocated.

Executors

wShow Additional Metrics
Select All
On Heap Memory
Off Heap Memory

@Resources <—
Summary
RDD Storage Disk Active Failed Complete Total Task Time (GC Shuffle Shuffle
+ Blocks Memory Used Cores Tasks Tasks Tasks Tasks Time) Input Read Write Blacklisted
Active(2) 0 00B/13GiB 00B 8 0 0 839 839 5.4 min(1s) 28GiB 1.2GiB 1.2GiB 0
Dead(0) 0 00B8/008B 008 0 0 0 0 0 0.0 ms (0.0 ms) 008 008 008 0
Total(2) O 00B/13GiB 0.0B 8 0 0 839 839 54 min(1s) 28GiB 1.2GiB 12GiB 0
Executors
Show 20 $ entries Search:
Task
Time
Executor RDD Storage Disk Active Failed Complete Total (GC Shuffle  Shuffle
D 4 Address Status Blocks Memory Used Cores Resources Tasks Tasks Tasks Tasks Time) Input Read Write Logs
0 10.19.183.153:45123 Active 0 00B/78 00B 8 gpu: (1) 0 0 839 839 54min 28GB 1.2GiB 12GiB
GiB (1)
driver spark-gashen:33965 Active 0 00B/52 00B O 0 0 0 0 00ms 00B 00B 008
GiB (0.0 ms)

Summary

In this chapter, we covered the basics of getting started using the new RAPIDS APIs Plugin for
Apache Spark 3.x that leverages GPUs to accelerate processing. For more information refer to
the RAPIDS Accelerator for Spark guide.
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Chapter 5: Predicting Housing Prices
Using Apache Spark Machine Learning

Zillow is one of the largest marketplaces for real estate information in the U.S. and a leading
example of impactful machine learning (ML). Zillow Research uses ML models that analyze
hundreds of data points on each property to estimate home values and predict market
changes. In this chapter, we cover how to use Apache Spark ML Random Forest Regression to
predict the median sales prices for homes in a region. Note that currently only XGBoost is
GPU-Accelerated in Spark ML, which we will cover in the next chapter.

Classification and Regression

Classification and regression are two categories of supervised machine learning algorithms.
Supervised ML, also called predictive analytics, uses algorithms to find patterns in labeled
data and then uses a model that recognizes those patterns to predict the labels on new data.
Classification and regression algorithms take a dataset with labels (also called the target
outcome) and features (also called properties] and learn how to label new data based on those
data features.

— Features &f-

Data Build Model
F(X1, X2)=Y
— X1, X2
= oS
Predict
New Data Use Model
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Classification identifies which category an item belongs to, such as whether a credit card
transaction is legitimate. Regression predicts a continuous numeric value like a house price,
for example.

Regression

Regression estimates the relationship between a target outcome dependent variable (the
label] and one or more independent variables (the features). Regression can be used to
analyze the strength of the relationship between the label and the feature variables, determine
how much the label changes with an adjustment in one or more feature variables, and predict
trends between the label and feature variables.

Let's go through a linear regression example of housing prices, given historical house prices
and features of houses (square feet, number of bedrooms, location, etc.):

» What are we trying to predict?
This is the label: the house price

» What are the data properties that you can use to predict?
These are the features: to build a regression model, you extract the features of interest
that have the strongest relationship with the label and contribute the most to the
prediction.
In the following example, we'll use the size of the house.

Label: Data point: price, size
House Price

Feature: house size
(square meters)
X

House Price = intercept + coeff * house size
y=a+bx

Linear regression models the relationship between the Y "Label” and the X "Feature”, in this
case the relationship between the house price and size, with the equation: Y = intercept
+ (coefficient * X) + error. IThe coefficient measures the impact of the feature on
the label, in this case the impact of the house size on the price.
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¥ Features M—

Build Model

Y=a+bx

ST . B e

Predict

New Data Use Model,
slope a, coefficient b

Multiple linear regression models the relationship between two or more "Features™ and a
“Label.” For example, if we wanted to model the relationship between the price and the house
size, the number of bedrooms, and the number of bathrooms, the multiple linear regression
function would look like this:

Yi=B0+B1X1+B2X2+ -+ BpXp+E
Price = intercept + (coefficient1 size) + (coefficient2 bedrooms) + (coefficient3 * bathrooms] + error.

The coefficients measure the impact on the price of each of the features.

Decision Trees

Decision trees create a model that predicts the label by evaluating a set of rules that follow an
if-then-else pattern. The if-then-else feature questions are the nodes, and the answers “true”
or “false” are the branches in the tree to the child nodes.

decision tree model estimates the minimum number of true/false questions needed to assess
the probability of making a correct decision. Decision trees can be used for classification to
predict a category, or probability of a category, or regression to predict a continuous numeric
value. Following is an example of a simplified decision tree to predict housing prices:

» Q1:If the size of the house > 2000sqft
o T:Q2:If the number of bedrooms > 3
> T:Q83: If the number of bathrooms is > 3
— T: Price=$400,000
—  F: Price=$200,000

Leveraging NVIDIA GPUs to Power the Next Era of Analytics and Al WP-09926-001_v02 | 74



Accelerating Apache Spark 3 Chapter 5: Predicting Housing Prices Using Apache Spark Machine Learning

If size > 2000 sqft

&
If number bedroom > 2

If numb bathrm > 2 If numb bathrm < 2

If number bedroom > 3

F
If numb bathrm > 3 If numb bathrm < 3

200,000 250,000 250,000 200,000 150,000

400,000 300,000

Random Forests

Ensemble learning algorithms combine multiple machine learning algorithms to obtain a
better model. Random forest is a popular ensemble learning method for classification and
regression. The algorithm builds a model consisting of multiple decision trees, based on
different subsets of data at the training stage. Predictions are made by combining the output
from all the trees, which reduces the variance and improves the predictive accuracy. For
random forest classification, the label is predicted to be the class predicted by the majority of
trees. For random forest regression, the label is the mean regression prediction of the
individual trees.

All Data

Tree Tree Tree

Spark provides the following algorithms for regression:
Linear regression

Generalized linear regression

Decision tree regression

Random forest regression

Gradient-boosted tree regression

XGBoost regression

Survival regression

vV v Vv vV vVvVvyYyvVvyy

Isotonic regression
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Machine Learning Workflows

Machine learning is an iterative process which involves:

» Extracting, Transforming, Loading (ETL] and analyzing historical data in order to extract
the significant features and label.

» Training, testing, and evaluating the results of ML algorithms to build a model.
» Using the model in production with new data to make predictions.
» Model monitoring and model updating with new data.

Test
"‘.* sat IIIIIIIIIIIIII....-.I‘I
* Evaluate Results *,

asmn .
" uy,

*
¥

Feature Extraction * .
Data £ 'Y
Discovery, Traini Model
i . ng me i Test Model
Model Ar;hnrad > Set g Training/ Predictions
Creation ata Building
. .
" = Update .‘* Monitor
Feature
Production Extraction

e GEED

New Data

IIIIIIIII’

v +*
+
Deployed S -
Model L 24 Insights

Using Spark ML Pipelines

For the features and label to be used by an ML algorithm, they must be put into a feature
vector, which is a vector of numbers representing the value for each feature. Feature vectors
are used to train, test, and evaluate the results of an ML algorithm to build the best model.

Featurization Training Model Evaluation
price
Iy ¥
size /

) -
number +
bedrooms .,?/

=
number T+3
bath rooms -
%
Training Data Feature Vectors Model Best Model

Reference Learning Spark
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Spark ML provides a uniform set of high-level APIs, built on top of DataFrames for building ML
pipelines or workflows. Having ML pipelines built on top of DataFrames provides the scalability
of partitioned data processing with the ease of SQL for data manipulation.

Training Testing

\ \

\ ? \
Estimator Train Model Predict Using Model

We use a Spark ML Pipeline to pass the data through transformers and extract the features,
an estimator to produce the model, and an evaluator to measure the accuracy of the model.

» Transformer: A Transformer is an algorithm that transforms one DataFrame into another
DataFrame. We'll use a Transformer to create a DataFrame with a features vector column.

» Estimator: An Estimator is an algorithm that can be fit on a DataFrame to produce a
transformer. We'll use an estimator to train a model, and return a model Transformer,
which can add a predictions column to a DataFrame with a features vector column.

> Pipeline: A pipeline chains multiple Transformers and Estimators together to specify an
ML workflow.

» Evaluator: An Evaluator measures the accuracy of a trained Model on label and prediction
DataFrame columns.
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Example Use Case Dataset

In this example, we’ll be using the California housing prices dataset from the StatLib
repository. This dataset contains 20,640 records based on data from the 1990 California
census, with each record representing a geographic block. The following list provides a
description for the attributes of the data set.

» Median House Value: Median house value (in thousands of dollars) for households within a
block.

Longitude: East/west measurement, a higher value is further west.
Latitude: North/south measurement, a higher value is further north.
Housing Median Age: Median age of a house within a block, lower is newer.
Total Rooms: Total number of rooms within a block.

Total Bedrooms: Total number of bedrooms within a block.

Population: Total number of people residing within a block.

Households: Total number of households in a block.

vV v v v v vVvVvy

Median Income: Median income for households within a block of houses (measured in tens
of thousands of dollars).

To build a model, you extract the features that most contribute to the prediction. In order to
make some of the features more relevant for predicting the median house value, instead of
using totals we'll calculate and use these ratios: rooms per house=total rooms/households,
people per house=population/households, and bedrooms per rooms=total bedrooms/total
rooms.

In this scenario, we use random forest regression on the following label and features:
> Label = median house value

» Features = {"median age”, "median income”, "rooms per house”, "population per house”,
"bedrooms per room”, "longitude”, "latitude” }

Load the Data from a File into a DataFrame

Load Data—» | L=l

The first step is to load our data into a DataFrame. In the following code, we specify the data
source and schema to load into a dataset.

import org.apache.spark.

import org.apache.spark.ml.

import org.apache.spark.ml.feature.

import org.apache.spark.ml.regression.

import org.apache.spark.ml.evaluation.

import org.apache.spark.ml.tuning.
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import org.apache.spark.sqgl.
import org.apache.spark.sql.functions.
import org.apache.spark.sqgl.types.

import org.apache.spark.ml.Pipeline

val schema = StructType (Array (
StructField("longitude", FloatType,true),
StructField("latitude", FloatType, true),
StructField("medage", FloatType, true),
StructField ("totalrooms", FloatType, true),
StructField("totalbdrms", FloatType, true),
StructField("population", FloatType, true),
StructField("houshlds", FloatType, true),
StructField("medincome", FloatType, true),
( )

StructField("medhvalue", FloatType, true
))

var file ="/path/cal housing.csv"

var df = spark.read.format ("csv") .option("inferSchema", "false").schema (schema).load(file)
df.show

Fom— Fo———— +o———— Fo————— Fo——— +o— +o————— +o——— +-——— +

| longitude|latitude|medage|totalrooms|totalbdrms|population|houshlds|medincome |medhvalue|

result

fomm - e e Fom fom - fommm f——— fomm—————— fommm————— +
|  -122.23] 37.88| 41.0]| 880.0| 129.0] 322.0] 126.0]| 8.3252| 452600.0]
|  -122.22] 37.86| 21.0]| 7099.0] 1106.0] 2401.0| 1138.0] 8.3014| 358500.0]
|  -122.24] 37.85] 52.0] 1467.0] 190.0] 496.0] 177.0]| 7.2574| 352100.0]
fomm—————— Fom— - fo———— Fom fommm - fommm o B fomm—————— +

In the following code example, we use the DataFrame withColumn() transformation, to add
columns for the ratio features: rooms per house=total rooms/households, people per
house=population/households, and bedrooms per rooms=total bedrooms/total rooms. We then
cache the DataFrame and create a temporary view for better performance and ease of using
SQAL.

// create ratios for features

df = df.withColumn ("roomsPhouse", col ("totalrooms") /col ("houshlds"))

df = df.withColumn ("popPhouse", col ("population") /col ("houshlds"))

df = df.withColumn ("bedrmsPRoom", col ("totalbdrms") /col ("totalrooms"))

df=df.drop ("totalrooms", "houshlds", "population" , "totalbdrms")
df.cache

df.createOrReplaceTempView ("house")

spark.catalog.cacheTable ("house")
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Summary Statistics

Spark DataFrames include some built-in functions for statistical processing. The describel()
function performs summary statistics calculations on numeric columns and returns them as a
DataFrame. The following code shows some statistics for the label and some features.

df .describe ("medincome", "medhvalue", "roomsPhouse", "popPhouse") . show

result:

+———— o o o Fo— 1

| summary | medincome | medhvalue | roomsPhouse | popPhouse|

Fo——— Fo————— o o Fo— +
count | 20640 | 20640 | 20640 | 20640

mean|3.87067100303464161206855.81690891474| 5.428999742190365| 3.070655159436382 |
stddev|1.8998217183639696]115395.615874413592.4741731394243205| 10.38604956221361 |
min | 0.4999] 14999.010.8461538461538461|0.6923076923076923 |
max | 15.0001 | 500001.0| 141.9090909090909(11243.3333333333333
fomm—— - Fommm o Fmmmm Fommmm fommm e +

The DataFrame Corr() function calculates the Pearson correlation coefficient of two columns
of a DataFrame. This measures the statistical relationship between two variables based on the
method of covariance. Correlation coefficient values range from 1 to -1, where 1 indicates a
perfect positive relationship, -1 indicates a perfect negative relationship, and a 0 indicates no
relationship. Below we see that the median income and the median house value have a
positive correlation relationship.

df.select (corr ("medhvalue", "medincome") ) .show ()

|corr (medhvalue, medincome) |
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The following scatterplot of the median house value on the Y axis and median income on the X
axis shows that they are linearly related to each other.
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The following code uses the DataFrame randomSplit method to randomly split the Dataset into
two, with 80% for training and 20% for testing.

val Array(trainingData, testData) = df.randomSplit (Array (0.8, 0.2), 1234)

Feature Extraction and Pipelining

The following code creates a VectorAssembler (a transformer], which will be used in a pipeline
to combine a given list of columns into a single feature vector column.

val featureCols = Array("medage", "medincome", "roomsPhouse", "popPhouse",
"bedrmsPRoom", "longitude", "latitude")

//put features into a feature vector column

val assembler = new
VectorAssembler () .setInputCols (featureCols) .setOutputCol ("rawfeatures")
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The following code creates a StandardScaler (a transformer], which will be used in a pipeline
to standardize features by scaling to unit variance using DataFrame column summary
statistics.

val scaler = new
StandardScaler () .setInputCol ("rawfeatures") .setOutputCol ("features") .setWith
Std (true.setWithMean (true)

The result of running these transformers in a pipeline will be to add a scaled features column
to the dataset as shown in the following figure.

Transformers

DataFrame +

DataFrame VectorAssembly Lable and
Features

The final element in our pipeline is a RandomForestRegressor (an estimator], which trains on
the vector of features and label, and then return a RandomForestRegressorModel (a
transformer] .

val rf = new
RandomForestRegressor () .setLabelCol ("medhvalue") .setFeaturesCol ("features")

In the following example, we put the VectorAssembler, Scaler and RandomForestRegressor in
a Pipeline. A pipeline chains multiple transformers and estimators together to specify an ML
workflow for training and using a model.

val steps = Array(assembler, scaler, rf)

val pipeline = new Pipeline () .setStages (steps)

Transformers Estimator

DataFrame VectorAssembly Scaler RandomForest

Pipeline
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Train the Model

Spark ML supports a technique called k-fold cross-validation to try out different combinations
of parameters in order to determine which parameter values of the ML algorithm produce the
best model. With k-fold cross-validation, the data is randomly split into k partitions. Each
partition is used once as the test dataset, while the rest are used for training. Models are then
generated using the training sets and evaluated with the testing sets, resulting in k model
accuracy measurements. The model parameters leading to the highest accuracy
measurements produce the best model.

ML Cross-Validation Process

Features

Without Labels
/ Feature Features \\
! Extraction and Labels \

Test Model
Predictions

Train/Test Loop: Test accuracy of
predictions matching test labels

Spark ML supports k-fold cross-validation with a transformation/estimation pipeline which
tries out different combinations of parameters, using a process called grid search, where you
set up the parameters to test in a cross-validation workflow.

CrossValidator

Parameter — .. > Evaluator
Grid
Pipeline
l Fit Fit a model to the data with

provided parameter grid

Pipeline Model

val cvModel = crossval.fit(ntrain)
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The following code uses a ParamGridBuilder to construct the parameter grid for the model
training. We define a RegressionEvaluator, which will evaluate the model by comparing the
test medhvalue column with the test prediction column. We use a CrossValidator for model
selection. The CrossValidator uses the pipeline, the parameter grid, and the evaluator to fit the
training dataset and return the best model. The CrossValidator uses the ParamGridBuilder to
iterate through the maxDepth, maxBins, and numbTrees parameters of the
RandomForestRegressor estimator and to evaluate the models, repeating three times per
parameter value for reliable results.

val paramGrid = new ParamGridBuilder ()
.addGrid (rf.maxBins, Array (100, 200))
.addGrid (rf.maxDepth, Array(2, 7, 10))
.addGrid (rf.numTrees, Array (5, 20))
Jouild()

val evaluator = new RegressionEvaluator ()
.setLabelCol ("medhvalue")
.setPredictionCol ("prediction")
.setMetricName ("rmse")

val crossvalidator = new CrossValidator ()
.setEstimator (pipeline)
.setEvaluator (evaluator)
.setEstimatorParamMaps (paramGrid)
.setNumFolds (3)

// fit the training data set and return a model
val pipelineModel = crossvalidator.fit (trainingData)

Next, we can get the best model in order to print out the feature importances. The results
show that the median income, population per house, and the longitude are the most important
features.

val featureImportances = pipelineModel
.bestModel.asInstanceOf [PipelineModel]
.stages (2)
.asInstanceOf [RandomForestRegressionModel]
.featureImportances

assembler.getInputCols
.zip (featureImportances.toArray)
.SortBy (- . 2)
.foreach { case (feat, imp) =>
println(s"feature: $feat, importance: S$imp") }

result:
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feature: medincome, importance: 0.4531355014139285
feature: popPhouse, importance: 0.12807843645878508
feature: longitude, importance: 0.10501162983981065
feature: latitude, importance: 0.1044621179898163
feature: bedrmsPRoom, importance: 0.09720295935509805
feature: roomsPhouse, importance: 0.058427239343697555
feature: medage, importance: 0.05368211559886386

In the following example we get the parameters for the best random forest model produced,
using the cross-validation process, which returns: max depth of 2, max bins of 50 and 5 trees.

val bestEstimatorParamMap = pipelineModel
.getEstimatorParamMaps
.zip (pipelineModel.avgMetrics)
.maxBy(_ . 2)
1

println(s"Best params:\nS$bestEstimatorParamMap")

result:
rfr maxBins: 50,
rfr maxDepth: 2,
rfr —numTrees: 5
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Predictions and Model Evaluation

Next we use the test DataFrame, which was a 20% random split of the original DataFrame,
and was not used for training, to measure the accuracy of the model.

Transformers Estimator

DataFrame VectorAssembly Scaler RandomForest

Pipeline

:

Load Data —» i —>@ —p @ Evaluator

Test Pipeline Predictions
DataFrame Model DataFrame

In the following code we call transform on the pipeline model, which will pass the test
DataFrame, according to the pipeline steps, through the feature extraction stage, estimate
with the random forest model chosen by model tuning, and then return the predictions in a
column of a new DataFrame.

val predictions = pipelineModel.transform(testData)

predictions.select ("prediction", "medhvalue") .show (5)

| prediction|medhvalue|
o fom e +
1104349.59677450571| 94600.0|
| 77530.43231856065| 85800.0]
[111369.71756877871| 90100.0|
| 97351.87386020401| 82800.0]|
o o +
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With the predictions and labels from the test data, we can now evaluate the model. To evaluate
the linear regression model, you measure how close the predictions values are to the label
values. The error in a prediction, shown by the green lines below, is the difference between the
prediction (the regression line Y value) and the actual Y value, or label. (Error = prediction-
label).
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The Mean Absolute Error (MAE] is the mean of the absolute difference between the label and
the model's predictions. The absolute removes any negative signs.
MAE = sum(absolute(prediction-label]] / number of observations).

The Mean Square Error (MSE] is the sum of the squared errors divided by the number of
observations. The squaring removes any negative signs and also gives more weight to larger
differences. (MSE = sum(squared(prediction-labell] / number of observations).

The Root Mean Squared Error (RMSE] is the square root of the MSE. RMSE is the standard
deviation of the prediction errors. The Error is a measure of how far from the regression line
label data points are and RMSE is a measure of how spread out these errors are.

The following code example uses the DataFrame withColumn transformation, to add a column
for the error in prediction: error=prediction-medhvalue. Then we display the summary
statistics for the prediction, the median house value, and the error (in thousands of dollars).

predictions = predictions.withColumn ("error", col ("prediction")-
col ("medhvalue"))

predictions.select ("prediction", "medhvalue", "error").show

result:

o o — o +
| prediction|medhvalue| error|
e o o +

| 104349.5967745057| 94600.0|] 9749.596774505713]|
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| 77530.4323185606| 85800.0] -8269.567681439352|
| 101253.3225967887| 103600.0] -2346.677403211302|

e fomm - o +

predictions.describe ("prediction", "medhvalue", "error").show

result:

Fo————— fom - fom e fom e +

| summary | prediction| medhvalue | error|

Fo————— fom - fom e fom e +
count | 4161 | 4161 | 4161 |

|

| mean|206307.4865123929|205547.72650805095| 759.7600043416329 |
| stddev|97133.45817381598[114708.03790345002| 52725.56329678355]|
| min|56471.09903814694 | 26900.0]-339450.5381565819|
| max|499238.1371374392 | 500001.01293793.71945819416/|
pommm e e e +

The following code example uses the Spark RegressionEvaluator to calculate the MAE on the
predictions DataFrame, which returns 36636.35 (in thousands of dollars).

val maevaluator = new RegressionEvaluator ()
.setlLabelCol ("medhvalue")
.setMetricName ("mae")

val mae = maevaluator.evaluate (predictions)
result:
mae: Double = 36636.35

The following code example uses the Spark RegressionEvaluator to calculate the RMSE on the
predictions DataFrame, which returns 52724.70.

val evaluator = new RegressionEvaluator ()
.setLabelCol ("medhvalue")
.setMetricName ("rmse")

val rmse = evaluator.evaluate (predictions)

result:
rmse: Double = 52724.70

Transformers Evaluator

DataFrame +
Predictions

DataFrame Model Pipeline Evaluator
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Save the Model

We can now save our fitted pipeline model to the distributed file store for later use in
production. This saves both the feature extraction stage and the random forest model chosen
by model tuning.

pipelineModel .write.overwrite () .save (modeldir)

The result of saving the pipeline model is a JSON file for metadata and a Parquet for model
data. We can reload the model with the load command; the original and reloaded models are
the same:

val sameModel = CrossValidatorModel.load (“modeldir")

Summary

In this chapter, we discussed Regression, Decision Trees, and Random Forest algorithms. We
covered the fundamentals of Spark ML pipelines and worked through a real world example to
predict median house prices.
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Chapter 6: Predicting Taxi Fares Using
GPU-Accelerated XGBoost

Big data is one of the 10 major areas used to improve cities. The analysis of location and
behavior patterns within cities allows for optimization of traffic, better planning decisions, and
smarter advertising. For example, the analysis of GPS car data enables cities to optimize
traffic flows based on real-time traffic information. Telecom companies are using mobile
phone location data to provide insights by identifying and predicting the location activity trends
and patterns of a population in large metropolitan areas. And, the application of machine
learning (ML) to geolocation data is proving instrumental in identifying patterns and trends for
the telecom, travel, marketing, and manufacturing industries.

In this chapter, we'll use public New York Taxi trip data to examine regression analysis on taxi
trip data as it pertains to predicting NYC taxi fares. We'll start with an overview of the XGBoost
algorithm and then explore the use case.

XGBoost

XGBoost, which stands for Extreme Gradient Boosting, is a scalable, distributed gradient-
boosted decision tree (GBDT] machine learning library. XGBoost provides parallel tree
boosting and is the leading ML library for regression, classification, and ranking problems.
The RAPIDS team works closely with the Distributed Machine Learning Common (DMLC)
XGBoost organization, and XGBoost now includes seamless, drop-in GPU acceleration,
significantly speeding up model training and improving accuracy for better predictions.

Gradient Boosting Decision Trees (GBDTs] is a decision tree ensemble algorithm similar to
Random Forest, the difference is in how the trees are built and combined. Random Forest
uses a technique called bagging to build full decision trees in parallel from bootstrap samples
of the data set. The final prediction is an average of all of the decision tree predictions.
Gradient Boosting Decision Trees use a technique called boosting to iteratively train an
ensemble of shallow decision trees, with each iteration using weights given to records in the
previous sample, which did not predict correctly, to decrease the error of the succeeding tree.
The final prediction is a weighted average of all of the decision tree predictions. Bagging
minimizes the variance and overfitting, boosting minimizes the bias and underfitting.
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XGBoost is a variation of GBDTs. With GBDTs, the decision trees are built sequentially. With
XGBoost, trees are built in parallel, following a level-wise strategy, scanning across gradient
values and using these partial sums to evaluate the quality of splits at every possible split in
the training set.

GPU-Accelerated XGBoost

The GPU-accelerated XGBoost algorithm makes use of fast parallel prefix sum operations to

scan through all possible splits, as well as parallel radix sorting to repartition data. It builds a
decision tree for a given boosting iteration, one level at a time, processing the entire Dataset

concurrently on the GPU.

GPU-accelerated Spark XGBoost offers the following key features:

> Partitioning of ORC, CSV, and Parquet input files across multi GPUs
Essentially any number/size of supported input file formats can be divided up evenly
among the different training nodes.

» GPU-accelerated training
Improved XGBoost training time with a dynamic in-memory representation of the training
data that optimally stores features based on the sparsity of a dataset rather than a fixed in-
memory representation based on the largest number of features amongst different
training instances. Decision trees are built using gradient pairs that can be reused to save
memory, reducing copies to increase performance.

> Efficient GPU memory utilization
XGBoost requires data to fit into memory which creates a restriction on data size using
either a single GPU or distributed multi-GPU multi-node training. Now, with improved GPU
memory utilization, users can train with five times the size of data as compared to the first
version. This is one of the critical factors to improve total cost of training without impacting
performance.

» Histogram based tree construction algorithms on GPUs
The construction of decision trees can be slow since finding the exact best split for a
feature requires going through all feature values and evaluating the loss function for each
of them. For large datasets, it is unnecessary and repetitive to check every possible
position to find the exact split location; instead, an approximately best split works quite
well. One way to find the approximate best split is to test only k split positions, and this can
be done efficiently using feature histograms. Finding optimal splits for a decision tree
then reduces to the simpler problem of searching over histogram bins in a discrete space.
The end result of this is a significantly faster and more memory efficient algorithm that
still retains its accuracy. Because building histograms is a rather straight-forward
process, it is easy to implement efficiently on GPU hardware.

Example Use Case Dataset

The example dataset is a New York Taxi Dataset, which has already been cleaned up and
transformed to add features, such as the haversine distance using this Spark ETL notebook.
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In this scenario, we'll build a model to predict the taxi fare amount, based on the following
features:

» Label = fare amount

» Features = {passenger count, trip distance, pickup longitude, pickup latitude, rate code,
dropoff longitude, dropoff latitude, hour, day of week, is weekend}

Load the Data from a File into a DataFrame

First, we import the packages needed for both GPU version and CPU versions of Spark
xgboost:

import org.apache.spark.sql.functions.
import org.apache.spark.sqgl.types.
import org.apache.spark.sqgl.

import org.apache.spark.ml.

import org.apache.spark.ml.feature.
import org.apache.spark.ml.evaluation.
import org.apache.spark.sqgl.types.

import ml.dmlc.xgboost4j.scala.spark.{XGBoostRegressor,
XGBoostRegressionModel }

For the GPU version of Spark xgboost you also need the following import:

import ml.dmlc.xgboost4j.scala.spark.rapids. {GpuDataReader, GpuDataset}

We specify the schema with a Spark StructType.

lazy val schema =
StructType (Array (

StructField("vendor id", DoubleType),
StructField ("passenger count", DoubleType),
StructField("trip distance", DoubleType),
StructField("pickup longitude", DoubleType),
StructField ("pickup latitude", DoubleType),
StructField
StructField

(

(

(

(

("rate code", DoubleType),

("store and fwd", DoubleType),
StructField ("dropoff longitude", DoubleType),
StructField("dropoff latitude", DoubleType),

(

(

(

(

(

(

(

StructField (labelName, DoubleType),
StructField ("hour", DoubleType),
StructField ("year", IntegerType),
StructField ("month", IntegerType),
StructField("day", DoubleType),
StructField("day of week", DoubleType),
StructField("is weekend", DoubleType)

Leveraging NVIDIA GPUs to Power the Next Era of Analytics and Al WP-09926-001_v02 | 92


http://spark.apache.org/docs/latest/sql-programming-guide.html#programmatically-specifying-the-schema

Accelerating Apache Spark 3 Chapter 6: Predicting Taxi Fares Using GPU-Accelerated XGBoost

In the following code we create a Spark session and set the training and evaluation data file
paths. (Note: If you are using a notebook, then you do not have to create the SparkSession.)

val trainPath "/FileStore/tables/taxi tsmall.csv"
val evalPath "/FileStore/tables/taxi esmall.csv"
val spark = SparkSession.builder () .appName ("Taxi-GPU") .getOrCreate

We load the data from a CSV file into a Spark DataFrame, specifying the datasource and
schema to load into a DataFrame, as shown below.

Load Data —» P OBl HE

val tdf = spark.read.option("inferSchema",
"false") .option ("header", true) .schema (schema) .csv(trainPath)
val edf = spark.read.option("inferSchema", "false").option ("header",

true) .schema (schema) .csv (evalPath)

DataFrame show (5) displays the first 5 rows:

tdf.select ("trip distance", "rate code","fare amount") .show (5)
result:

- - e e e +
| trip distance| rate code|fare amount |
- - e e e +
| 2.72]1-6.77418915E8 | 11.5]
| 0.94|-6.77418915E8| 5.5]
| 3.63[-6.77418915E8 | 13.0]
| 11.86|-6.77418915E8| 33.5]
| 3.031-6.77418915E8 | 11.0]
- - B et +

The function describe returns a DataFrame containing descriptive summary statistics,
such as count, mean, standard deviation, and minimum and maximum value for each
numerical column.

tdf.select ("trip distance", "rate code","fare amount") .describe () .show

o o o o +

| summary | trip distance| rate code| fare amount|

o o o o +
count | 7999 7999 7999

|

| mean| 3.278923615451919]-6.569284350812602E8|12.348543567945994 |
| stddev|[3.6320775770793547]1.6677419425906155E8|10.221929466939088
| min | 0.0] -6.77418915E8 | 2.5]
| max|35.970000000000006 | 1.957796822E9| 107.5]|
fo—m——— o Fmm o +
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The following scatter plot is used to explore the correlation between the fare amount and the
trip distance.

%sqgl
select trip distance, fare amount

from taxi
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Define Features Array

For the features to be used by an ML algorithm, they are transformed and put into feature
vectors, which are vectors of numbers representing the value for each feature. Below, a
VectorAssembler transformer is used to return a new DataFrame with a label and a vector
features column.

Load data Transform

DataFrame +

e DataFrame Eemmmmm e VectorAssembler

Features

// feature column names

val featureNames = Array("passenger count","trip distance",

"pickup longitude","pickup latitude","rate code","dropoff longitude",
"dropoff latitude", "hour", "day of week","is weekend")

// create transformer

object Vectorize ({
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def apply(df: DataFrame, featureNames: Seq[String], labelName: String) :
DataFrame = {

val toFloat = df.schema.map(f => col(f.name) .cast (FloatType))

new VectorAssembler ()
.setInputCols (featureNames.toArray)
.setOutputCol ("features")
.transform(df.select (toFloat: *))
.select (col ("features"), col (labelName))

}

// transform method adds features column

var trainSet = Vectorize (tdf, featureNames, labelName)

var evalSet = Vectorize (edf, featureNames, labelName)

trainSet.take (1)

result:

res8: Arraylorg.apache.spark.sgl.Row] = Array([[5.0,2.7200000286102295, -
73.94813537597656,40.82982635498047,-6.77418944E8, -
73.96965026855469,40.79747009277344,10.0,6.0,1.0],11.5])

When using the XGBoost GPU version, the VectorAssembler is not needed.

For the CPU version the num workers should be set to the number of CPU cores, the
tree method to “hist,” and the features column to the output features column in the Vector
Assembler.

Load data Transform Input
+
e 4 DataFrame Dataframe a2 Estimator
Features

lazy val paramMap = Map (
"learning rate" -> 0.05,
"max depth" -> 8,
"subsample" -> 0.8,
"gamma" -> 1,
"num_round" -> 500
)
// set up xgboost parameters
val xgbParamFinal = paramMap ++ Map ("tree method" -> "hist", "num workers" -
> 12)
// create the xgboostregressor estimator
val xgbRegressor = new XGBoostRegressor (xgbParamFinal)
.setLabelCol (1labelName)
.setFeaturesCol ("features")
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For the GPU version the num workers should be set to the number of machines with GPU in
the Spark cluster, the tree method to “gpu_hist, " and the features column to an array of
strings containing the feature names.

val xgbParamFinal = paramMap ++ Map ("tree_method" -> "gpu_hist",
"num workers" -> 1)

// create the estimator

val xgbRegressor = new XGBoostRegressor (xgbParamFinal)
.setLabelCol (labelName)
.setFeaturesCols (featureNames)

The following code uses the XGBoostRegressor estimator fit method on the training dataset to
train and return an XGBoostRegressor model. We also use a time method to return the time to
train the model and we use this to compare the time training with CPU vs. GPU.

Load data Transform Input Fit

DataFrame + . .
—» IEIEEEE mmmmm e Estimator Fitted Model
Features

object Benchmark {
def time[R] (phase: String) (block: => R): (R, Float) = {

val t0 = System.currentTimeMillis

val result = block // call-by-name

val tl = System.currentTimeMillis

println ("Elapsed time [" + phase + "]: " +

((tl - t0).toFloat / 1000) + "s")

(result, (tl - tO0).toFloat / 1000)

}

// use the estimator to fit (train) a model

val (model, ) = Benchmark.time ("train") {
xgbRegressor.fit (trainSet)
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The performance of the model can be evaluated using the eval dataset which has not been
used for training. We get predictions on the test data using the model transform method.

The model will estimate with the trained XGBoost model, and then return the fare amount
predictions in a new predictions column of the returned DataFrame. Here again, we use the
Benchmark time method in order to compare prediction times.

Transform
DataFrame + DataFrame +
e g Fitted Model Label + Features +
Label Features o
Predictions

val (prediction, ) = Benchmark.time ("transform") {

val ret = model.transform(evalSet) .cache ()

ret.foreachPartition(_ => ())

ret
}
prediction.select ( labelName, "prediction") .show (10)
Result:
- - +
| fare amount | prediction|
- - +
| 5.0 4.749197959899902 |
| 34.0138.651187896728516|
| 10.0111.101678848266602 |
| 16.5| 17.23284912109375]
| 7.0] 8.149757385253906 |
| 7.5]17.5153608322143555||
| 5.5] 7.248467922210693 |
| 2.5112.289423942565918 |
| 9.5110.893491744995117 |
| 12.0| 12.06682014465332|
- - +

The RegressionEvaluator evaluate method calculates the root mean square error, which is the
square root of the mean squared error, from the prediction and label columns.

|

| ,
DataFrame + Evaluate lZ(Predicted,v—Actual,-)z
i=1

Label + g CValuator ey RMSE:\‘ N

Predictions

val evaluator = new RegressionEvaluator () .setLabelCol (labelName)

val (rmse, ) = Benchmark.time ("evaluation") {
evaluator.evaluate (prediction)

}

println (s"RMSE == S$rmse")

Result:

Elapsed time [evaluation]: 0.356s

RMSE == 2.6105287283128353
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Save the Model

The model can be saved to disk, as shown below, in order to use later.

model ..write.overwrite () .save (savepath)

The result of saving the model is a JSON file for metadata and a Parquet file for model data.
We can reload the model with the load command. The original and reloaded models are the
same.

val sameModel = XGBoostRegressionModel.load (savepath)

Summary

In this chapter, we covered the basics of how XGBoost works and how to use XGBoost
Regression with Spark to predict taxi fare amounts. You can now run this example on CPUs
and GPUs with a larger dataset to compare time and accuracy of predictions.
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Chapter 7: Real-world Examples of
Accelerating End-to-End Machine
Learning Pipelines

Machine learning on customer data can help marketers avoid bombarding customers with
mass generic messaging or ads. Mass messaging is easy, but leveraging machine learning to
surpass the one-size-fits-all approach with more targeted methods is more effective. As more
and more companies are taking a personalized approach to content and marketing, an
important step toward providing personalized recommendations is to predict the probability
that a customer will perform a certain action. Machine learning can analyze large datasets of
customer’s preferences and past behaviors to predict this propensity, to identify and classify
individuals who will benefit the most, similar to the way recommendation engines work, in
order to maximize the impact with personalized and relevant email campaigns or ads.

In this chapter, we will discuss how Adobe, AWS, and Uber are building accelerated end-to-

end pipelines using Spark and GPU computing to enhance their customer services with ML or
DL.

Adobe: Accelerated End-to-End Customer Al

In Adobe Intelligent Services, Journey Al optimizes the delivery of marketing messages and
helps brands orchestrate the right message, to the right channel, at the right time. Journey Al
uses advanced machine learning models to optimize customers’ experience, maintain
customers’ brand awareness, and ensure that customers are not overwhelmed, by providing
predictive insights in the following areas:

» Send Time Optimization: Predict best email time so that a customer is most likely to
engage

» Customer Fatigue prediction: Predict probability of user engaging with email within the
next 7 days after sending email.

> Best email type: recommend the best email type to promote engagement and conversion.

» Engagement score: Predict the probability of user unsubscribing after opening email

» Customer Fatigue reason: Why the fatigue ml model thinks the user’s un-subscription risk
Is high.
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» Email Delivery Frequency Capping: Recommend max number of emails that should be
sent to customer in the next x number of days to maintain low fatigue risk level.

Email
Delivery

Frequency
Capping

Customer
Fatigue
Prediction

Customer
Fatigue
Reason

Adobe
Journey Al
Intelligent
Solution

Engagement
Score

Send Time
Optimization

Best Email
Type

GPU-Accelerated, End-to-End ML

Adobe’s Al Services team and NVIDIA collaborated on a high performance GPU accelerated,
end-to-end ML pipeline consisting of Spark 3.x, the RAPIDS Accelerator for Spark, XGBoost,
and RAPIDS software running on Databricks Azure.

ML Pipeline on GPU

Feature Generation XGBoost Training/Scoring
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For CPU vs. GPU cluster cost and runtime evaluation, the team used the following type of
worker nodes on Databricks Azure:

Node Name CPU Cores Memory GPU 1 Year Reserved Cost
CPU Worker | Standard L4 4 32GB $0.853
GPU Worker | Standard NCés_v3 b 112 GB 1 (TESLAV100) | $4.7

Benchmark results of a Spark SQL and XGBoost pipeline, in the table below, showed
significant performance improvement and cost reduction. Results showed time savings
between 24-62% and cost savings between 16-58%, with larger datasets on GPUs benefiting
the most.

Data Cluster Run Speed-up Time Cost
Size Customer  Cluster Type Size Time Cost Ratio Saving % Saving %
Small | Customer 1 | GPU Worker 1 264 0.34466667 | 1.32575758 @ 24.57 16.88
CPU Workers 5 350 0.41465278
NVIDIA GPU Worker 1 539 0.70369444 | 1.57884972  36.66 30.20
CPU Workers 5 851 1.00819861
Medium| Customer 2 | GPU Workers 2 323 0.84338889 | 2.11764706 # 52.78 47.96
CPU Workers 10 684 1.6207
Customer 3 | GPU Workers 2 433 1.13061111 | 2.37413395 | 57.88 53.58
CPU Workers 10 1028 2.43578889
Customer 4 | GPU Workers 2 1170 3.055 1.44444444  30.77 23.71
CPU Workers 10 1690 4.00436111
Large | Customer5 | GPU Workers 5 1621 10.5815278 | 2.6668723 | 62.50 56.68
CPU Workers 25 4323 25.6077708
Customer 6 | GPU Workers 10 3010 39.2972222 | 1.7551495 | 43.02 37.21
CPU Workers 50 5283 62.588875
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Another benchmark on the team’s largest real customer production Spark SQL and XGBoost
pipeline, with 2.88 TB data and complicated joins and aggregations, resulted in time savings of
54.6% and cost savings of 50%

Cluster Run Speed-up Time Cost
Customer Cluster Type Size Time (s) Cost($) Ratio Saving % Saving%
il GPU Workers | 20 2692 70.29 2.20653789 | 54.68 50.06
[Adobe] CPU Workers | 100 5940 140.75

To learn more listen to GPU-Accelerated High-Performance Machine Learning Pipeline.

AWS: Accelerating Deep Learning on the
JVM with Apache Spark and NVIDIA GPUs

Many AWS customers are interested in adopting deep learning with business use cases
ranging from customer service (including object detection from images and video streams,
sentiment analysis) to fraud detection and collaboration. However, until recently, there were
multiple difficulties with implementing deep learning in enterprise applications:

» The adoption learning curve was steep and required development of internal technical
expertise in new programming languages (e.g., Python) and frameworks.

» Deep Learning training and Inference is compute intensive and typically performed on
GPUs, while large-scale data engineering was typically programmed in Scala on multi-
CPU distributed Apache Spark.

Developed by Amazon, Deep Java Library (DJL) is an open-source Deep Learning Framework
implemented in Java on top of modern Deep Learning engines (TensorFlow, PyTorch, MXNet,
etc). While Java remains the first or second most popular programming language since the
late 90s, Python is the most used language for machine learning, with numerous resources
and deep-learning frameworks. DJL aims to make deep-learning open source tools accessible
to developers who primarily use Java or Scala with familiar concepts and intuitive APls.

By combining Spark 3.x, the Rapids Accelerator for Spark and DJL, users can build end-to-
end GPU accelerated Scala-based big data + DL pipelines using Apache Spark.

Leveraging NVIDIA GPUs to Power the Next Era of Analytics and Al WP-09926-001_v02 | 102


https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31942/
https://djl.ai/

Accelerating Apache Spark 3Chapter 7: Real-world Examples of Accelerating End-to-End Machine Learning Pipelines

This combination of Deep Java Learning, Apache Spark 3.x, and NVIDIA GPU computing
simplifies deep learning pipelines while improving performance and reducing costs.

Data Loading Data Preparation Data Processing
(S3/HDFS) (Load to GPU) (on GPU with Rapids)

PyTorch
TensorFlow
Apache MXNet

Output

Model Training/Inference (S3IHDFS)

End-to-End Spark and DJL on AWS EMR

At Amazon, the retail systems team created a multi-label classification model to understand
customer action propensity across thousands of product categories and used these
propensities to create a personalized experience for customers. To achieve this goal at
Amazon scale, the team built a Scala-based big data pipeline using Apache Spark 3.x, DJL,
and NVIDIA GPU computing on Amazon EMR.

To learn more read Accelerating Deep Learning on the JVM with Apache Spark and NVIDIA
GPUs.

Uber: Accelerated End-to-End ETL and DL

Uber applies Deep Learning across their business, from self-driving research to trip
forecasting and fraud prevention. Uber developed Horovod, a distributed DL training
framework for TensorFlow, Keras, PyTorch, and Apache MXNet, to make it easier to speed up
DL projects with GPUs and a data parallel approach to distributed training.

Horovod has support for Spark 3.x with GPU scheduling, and a new KerasEstimator class that
uses Spark Estimators with Spark ML Pipelines for better integration with Spark and ease of
use. This enables TensorFlow and PyTorch models to be trained directly on Spark
DataFrames, leveraging Horovod's ability to scale to hundreds of GPUs in parallel, without any
specialized code for distributed training. With the new accelerator-aware scheduling and
columnar processing APIs in Apache Spark 3.x, a production ETL job can hand off data to
Horovod running distributed DL training on GPUs within the same pipeline.
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End-to-End Spark ETL and Deep Learning at Uber

To learn more listen to Distributed deep learning with Horovod.

Summary

In this chapter, we discussed how Adobe, AWS, and Uber are building accelerated end-to-end
ML pipelines using Spark and GPU computing to enhance their customer services.
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Appendix: Code

Code

You can download the code to run the examples in the book from here:
» https://github.com/caroljmcdonald/spark3-book
» https://github.com/rapidsai/spark-examples

Additional Resources

» Spark documentation including deployment and configuration:
https://spark.apache.org/docs/latest/

» RAPIDS Accelerator for Spark
https://nvidia.github.io/spark-rapids/

» RAPIDS Al home https://rapids.ai/

» NVIDIA Developer portal https://developer.nvidia.com/
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