
GPUCC 
An Open-Source GPGPU Compiler  

A Preview
Eli Bendersky, Mark Heffernan, Chris Leary, Jacques Pienaar, Bjarke Roune, Rob

Springer, Jingyue Wu, Xuetian Weng, Artem Belevich, Robert Hundt
(rhundt@google.com)

Why Make an Open-Source Compiler?

• Security - No binary blobs in the datacenter

• Binary Dependencies - Software updates become difficult

• Performance - We can always do better on our benchmarks

• Bug Fix Time - We can be faster than vendors

• Language Features - Incompatible development environments

• Lock-In - Nobody likes that

• Philosophical - We just want to do this ourselves  

• Enable compiler research

• Enable community contributions

• Enable industry breakthroughs

NVCC Compile Flow

.cu

Front-End

LLVM 
Optimizer

NVPTX 
CodeGen

.ptx

PTXAS

SASS

Runtime

Driver

Libraries

Build Run

Binary Blob

Open-Source

File

NVCC Compile Flow

.cu

Front-End

LLVM 
Optimizer

NVPTX 
CodeGen

.ptx

PTXAS

SASS

Runtime

Driver

Libraries

Build Run

Binary Blob

Open-Source

File

Challenge: Mixed-Mode Compilation

GPUCC Architecture - Current & Interim

template <int N>
__global__ void kernel(
 float *y) {
 ...
}

template <int N>
void host(float *x) {
 float *y;
 cudaMalloc(&y, 4*N);
 cudaMemcpy(y, x, ...);
 kernel<N><<<16, 128>>>(y);
 ...
}

Host / Device
Splitter

Device Code

Device Code
Gen

PTX Asm

Host
Compilation

Host Code

“FAT” Binary

Clang

Opt

NVPTX{

GPUCC - Future Architecture (WIP)

Host 
Compilation

Mixed Input

Device 
Compilation

PTX Asm

“FAT” Binary

Clang

Opt

NVPTX{

• Clang Driver instead of Code Splitting

• Faster Compile Time

• No Src-To-Src Translation

Optimizations
• Unrolling (duh)

• Inlining (duh)

• Straight-line scalar optimizations (redundancies)

• Inferring memory spaces (use faster loads)

• Memory space alias analysis (it does help)

• Speculative Execution (divergence, predication)

• Bypassing 64-bit divisions (can be done in source, but…)

• Heuristics changes in other passes

See also:  
Jingyue Wu, GPUCC, An Open-Source GPGPU Compiler 
LLVM Dev Meeting, 2015

Runtime: StreamExecutor

• Compiler can an target CUDA runtime or
StreamExecutor

• StreamExecutor: Thin abstraction around CUDA/
OpenCL

• Advantages: C++, concise, type safe, better
tooling, stable host code

• Open-Sourced with TensorFlow release

Evaluation
• End-to-End Benchmarks

• ic1, ic2: Image Classification

• nlp1, nlp2: Natural Language Processing

• mnist: Handwritten Character Recognition

• Open-Source Benchmarks

• Rodinia

• SHOC

• Tensor

• Machine Setup: GPU NVidia Tesla K40c

• Baseline: NVCC v7.0

Open-Source Benchmarks

geomean  
 Tensor: 3.7%  
 Rodinia: 0.8%  
 SHOC: -0.5%

End-To-End Benchmarks

Compile Time
• 8% faster than nvcc on average (per unit)

• 2.4x faster for pathological compiles  
(eg., 109 secs vs 263 secs)

• Will be even faster after Clang integration

Libraries: FFT (geomean: 49%)

Routine Speedup
1D C2C 39%
2D C2C 51%
3D C2C 66%

1D Batched C2C 18%
3352D Batched C2C 33%

3D Batched C2C 40%
1D R2C 52%
2D R2C 37%
3D R3C 57%

1D Batched R2C 65%
2D Batched R2C 64%
3D Batched R2C 74%

Average Speedup, K40c, vs cuFFT 6.5

Libraries: Blas 1 (geomean: 21%)

Function Speedup
ASUM

A
15.1%

AXPY 9.6%
COPY 14.6%

DOT 15.7%
IAMIN/IAMAX 17.2%

NRM2 25.8%
ROT 3.5%

ROTM 141.6%
SCAL 9.6%
SWAP 0.3%

Average Speedup, K40c, vs cuBLAS 6.5

Libraries: Blas 2 (geomean: 92%)
Function Speedup

GEMV 8.3%
GBMV 136.5%
SYMV 51.2%
SBMV 368.9%
SPMV 99.4%
TRMV 177.8%
TBMV 160.6%
TPMV 165.1%

GER 1.3%
SYR 30.1%
SPR 62.1%

SYR2 20.1%
SPR2 51.5%
TRSV 2.1%
TBSV 334.2%
TPSV 191.7%

Average Speedup, K40c, vs cuBLAS 6.5

Libraries: Blas 3 (geomean: -20%)

Function Speedup

GEMM -33.0%

TRMM 80.5%

SYMM -11.8%

SYRK -44.1%

SYR2K -43.4%

Average Speedup, K40c, vs cuBLAS 6.5

Lack of SASS-level 
Optimizations

Libraries: DNN, Forward Convolution
(WIP)

• 23% better on batch size 32

• Up to 43% better on larger batch sizes

Libraries: DNN, Backward Convolution
(WIP)

• 9% better on batch size 32

Recap: NVCC Compile Flow

.cu

Front-End

LLVM 
Optimizer

NVPTX 
CodeGen

.ptx

PTXAS

SASS

Runtime

Driver

Libraries

Build Run

Binary Blob

Open-Source

File

GPUCC Compile Flow

.cu

Front-End

LLVM 
Optimizer

NVPTX 
CodeGen

.ptx

PTXAS

SASS

Runtime

Driver

Libraries

Build Run

Binary Blob

Open-Source

File

Clang

GPUCC Compile Flow

.cu

Front-End

LLVM 
Optimizer

NVPTX 
CodeGen

.ptx

PTXAS

SASS

Runtime

Driver

Libraries

Build Run

Binary Blob

Open-Source

File

Clang

Open-Source

GPUCC Compile Flow

.cu

Front-End

LLVM 
Optimizer

NVPTX 
CodeGen

.ptx

PTXAS

SASS

Runtime

Driver

Libraries

Build Run

Binary Blob

Open-Source

File

Clang

Open-Source

StreamExec

GPUCC Compile Flow

.cu

Front-End

LLVM 
Optimizer

NVPTX 
CodeGen

.ptx

PTXAS

SASS

Runtime

Driver

Libraries

Build Run

Binary Blob

Open-Source

File

Clang

Open-Source

StreamExec

Open-Source

GPUCC Compile Flow

.cu

Front-End

LLVM 
Optimizer

NVPTX 
CodeGen

.ptx

PTXAS

SASS

Runtime

Driver

Libraries

Build Run

Binary Blob

Open-Source

File

Clang

Open-Source

StreamExec

Open-Source

Sandbox

GPUCC Compile Flow

.cu

Front-End

LLVM 
Optimizer

NVPTX 
CodeGen

.ptx

PTXAS

SASS

Runtime

Driver

Libraries

Build Run

Binary Blob

Open-Source

File

Clang

Open-Source

StreamExec

Open-Source

Sandbox

Summary

• Open-Source GPGPU Compiler (targets CUDA)

• Compilation to PTX, no SASS

• Performance on par for several benchmarks

• Compile time on par

• Supports modern language features

• High-performance libraries (FFT, BLAS, DNN soon) 

• Plan for release: March 2016

• Call for Participation!

