거대 과학 실험 분야에 적합한 진단 데이터의 고속 병렬처리 KSTAR tokamak 장치에 적용한 사례들

오동근/국가핵융합연구소 spinhalf@nfri.re.kr

TECHNOLOGY CONFERENCE

GPU

대화형 실험분석과 데이터 병렬처리

▶ 핵융합 연구용 자기가둠 플라즈마 실험 → 거대과학 장치를 이용한 실험과학 분야

- ▶ 다양한 진단장치의 데이터를 유기적으로 다루는 작업 → 대화형 계산도구의 성능확보가 중요
- ▶ 특성상 다채널 → Data parallelism을 기반의 CUDA programming 모델에 대부분 적합
- ▶ 대화형 분석도구로서의 python 언어 → pyCUDA를 이용한 GPU연산의 구현과 통합이 용이

Development tools

- Python 2.6+
- Scientific libraries as python package for interactive computing (Numpy, Scipy ..)
- CUDA compiler interface by weaving technique : pyCUDA
- Ipython framework

GPU TECHNOLOGY FOR instance...

IP[y]: Notebook @cstone2

some examples - pyCUBLAS, pyCUDA, Cython and Weaving Last Checkpoint: Sep 11 16:51 (autosaved)

Logout

File Edit View Insert Cell Kernel Help

B %
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
<pA </p>
A
A
A
A
A

A simple pyCUDA example

· element-wise multiplication of two vectors, a and b

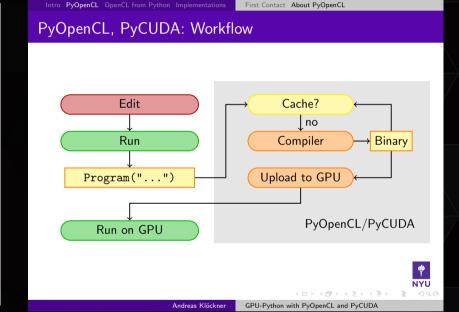
```
In [2]: import pycuda.autoinit
     import pycuda.driver as drv
     import numpy
     from pycuda.compiler import SourceModule
     mod = SourceModule(""'
      _global__ void multiply_them(float *dest, float *a, float *b)
      const int i = threadIdx.x:
       dest[i] = a[i] * b[i];
     }
     multiply them = mod.get function("multiply them")
     a = numpy.random.randn(100).astype(numpy.float32)
     b = numpy.random.randn(100).astype(numpy.float32)
     dest = numpy.zeros_like(a)
     multiply them(drv.Out(dest), drv.In(a), drv.In(b),block=(400,1,1), grid=(1,1))
     print dest - a*b
     0. 0.
       0. 0. 0. 0. 0. 0. 0. 0. 0.
                               0. 0. 0. 0.
                                          0. 0.
                                               Ο.
                                                  0. 0.
       0. 0.
         Ο.
       0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
```


Why script language (ex> python) with GPU?

According to the developer, Andreas Klönker

python + CUDA = pyCUDA ← python + OpenCL = pyOpenCL

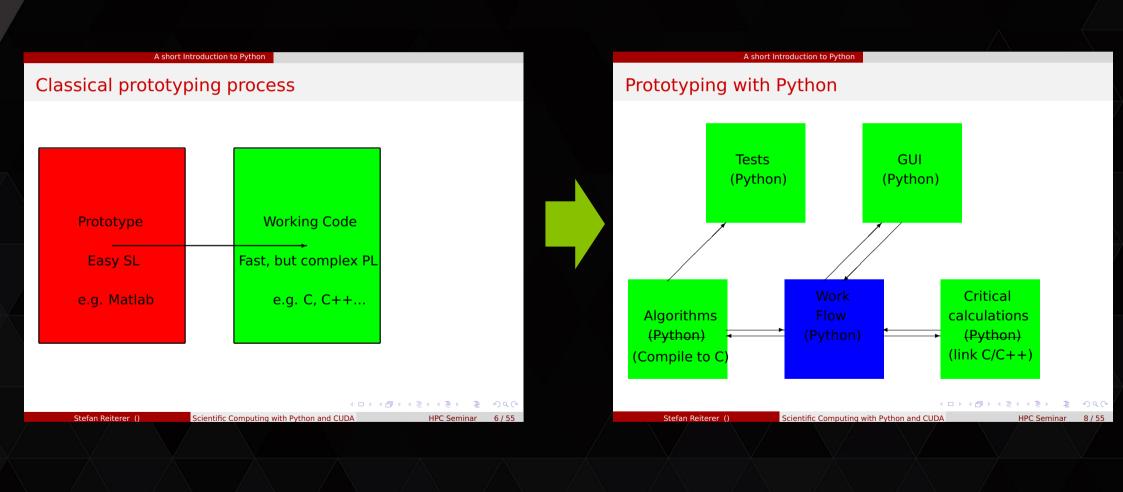
- GPU : everything that the scripting language are not!
 - Highly Parallel
 - Architecture sensitive
 - Built for maximum FP/ Memory throughput
- CPU : largely restricted to control tasks (~1000/s)
 - Scripting fast enough



Paradigm shift in code development

TECHNOLOGY CONFERENCE

GPU



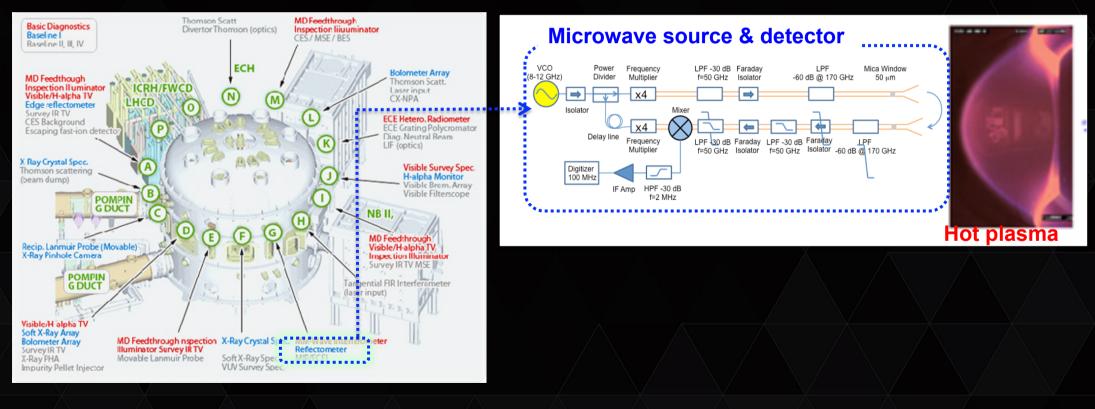
Case studies in KSTAR project (2014)

▶ CASE #1: Microwave 반사계를 이용한 KSTAR 플라즈마 전자밀도분포

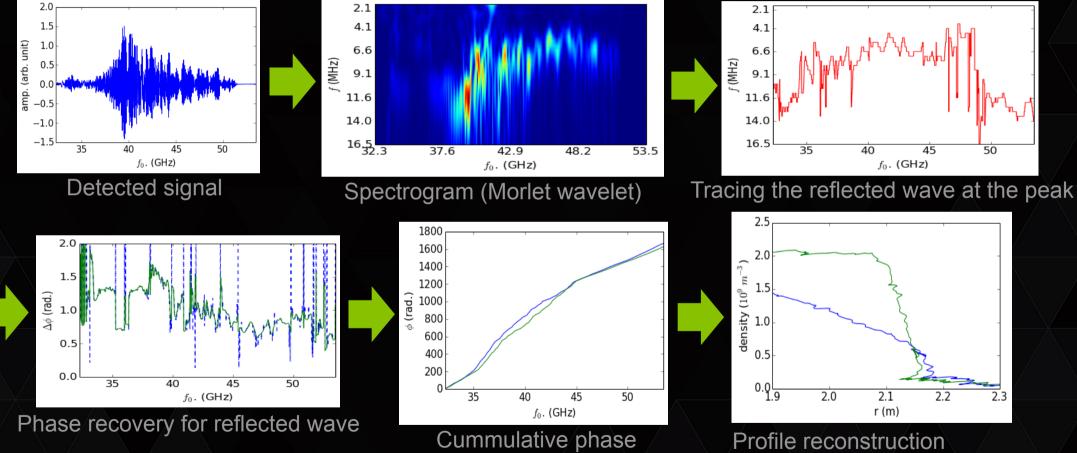
▶ CASE #2: KSTAR 운전 열부하와 초전도 자석 온도 예측을 위한 0-D 모형

CASE #1. Diagnostics of electron density profile using microwave reflectometer

KSTAR the tokamak - a plasma device of magnetic confinement

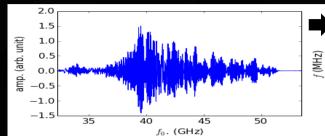


Tool-path in reflectometry (~1000 signals in parallel)

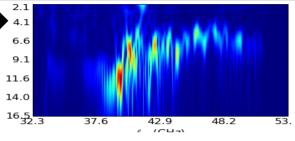


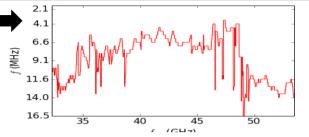
(Bottolier-Curttet algorithm)

It's similar to picking up the melody in transcription



GPU TECHNOLOGY CONFERENCE





GPU coding strategy

- ✓ Data parallel in multiple thread blocks = basic parallelism
 : processing many (O(10²) ~ O(10³)) signals in parallel
- \checkmark Fine-graining depending on the numerical process in each stage
 - : <u>Element-wise operations</u> → easy to fine-graining (wavelet multiplication in Fourier space, picking up maximum amplitude, phase difference etc...)
 - : <u>Reduction</u>

(cut-off finding by bitwise-operation, integral in reconstruction)

: <u>Scan</u>

(getting cumulative phase by work efficient scan)

- \checkmark Multi-pass implementation in the stage
 - : No concurrency is guaranteed for inter-block synchronization
 - \rightarrow unavoidable overhead of threads kernel loading in each pass

	Grid	1					
	335	(0.0)	Block (1	55 5	lock (2 ,	<u>}</u>	
	Block		Block (1	55 5	lock (2,		
		/		1			1
Block (1 , 1	1)						
Thread (0,0)		Thread (1,0)		Thread (2 , 0)		Thread (3,0)	
- 2		}		- }		\$	
Thread (0	.1)	Thread (1.1)	Thread (:	2,1)	Thread (3	.1)
Thread (0	,2)	Thread (1,2)	Thread (:	2,2)	Thread (3	.2)

Parallelized wavelet transform

It's straightforward : FT \rightarrow multiplication of wavelet \rightarrow IFT

```
import pycuda.driver as cudry
import pycuda.qpuarray as qparray
import pycuda.autoinit
from pycuda.compiler import SourceModule
from scikits.cuda import fft as cufft
source = """
_device____constant__ float tpi =6.2831853071795862;
 device constant float s omega0 = 6.0;
 device ______ int Nscale;
 device constant int NscaleQ;
 device ______ int NscaleV;
 device ______ int Nn;
 _device____constant__ int Nsig;
_device____constant__ int Ncol;
global void set psihat(float *scale, float *psihat) {
   int ix = threadIdx.x + blockIdx.x*blockDim.x;
   int iy = threadIdx.y + blockIdx.y*blockDim.y;
   float s omega, x;
   if (iy < Nscale && ix < Ncol) {
       s omega = .5*tpi*ix/(Ncol-1)*scale[iy];
       x = s omega - s omega0;
       psihat[ix+Ncol*iy] = 0.75112554*exp(-.5*x*x) *sqrt(tpi*scale[iy]);
_global__ void conv_rc( float *c_data, float *r_wf, float *c_ret) {
   int ix = threadIdx.x + blockIdx.x*blockDim.x;
   int iy = threadIdx.y + blockIdx.y*blockDim.y;
   int iscale = iy % Nscale;
   int isig = iy / Nscale;
   int idata;
   if (iscale < NscaleQ)
       idata = 2*isig;
   else if (iscale < NscaleQ+NscaleV)
       idata = 2*isig+1;
   if (ix < Ncol && iscale < Nscale && isig < Nsig) {
       c ret[2*ix+2*Nn*iy] = c data[2*ix+2*Ncol*idata]*r wf[ix+Ncol*iscale];
       c ret[1+2*ix+2*Nn*iy] = c data[1+2*ix+2*Ncol*idata]*r wf[ix+Ncol*iscale];
```

set_psihat = mod.get_function("set_psihat")
conv_rc = mod.get_function("conv_rc")

set_psihat(gpScale, gpPsihat, block=((Nn/2+1)/32,Nscale/4,1), grid=(64,4))

plan = cufft.Plan(Nn, np.float32, np.complex64, batch=Nsig)
cufft.fft(gpData, gpDatahat, plan)
conv_rc(gpDatahat, gpPsihat, gpConvhat, block=((Nn/2+1)/32, Nscale/4,1), grid=(64,Nsig*4))
plan = cufft.Plan(Nn, np.complex64, np.complex64, batch=Nscale*Nsig)
cufft.ifft(gpConvhat, gpCWT, plan)

100 ms to calculate 100 spectrograms in parallel ...

mod = SourceModule(source)

Cut-off finding - a kind of reduction algorithm

: Finding the position of negative segment longer than given tolerance \rightarrow reduction of indices by bitwise operation is designed to get the distance and leading index between rising and lowering edge

: Reduction process

• Present the positions as 2 bits data with the left and right indices

- : + to edge as 01, to + edge as 10, otherwise 00.
- Apply the bitwise operation for reduction :

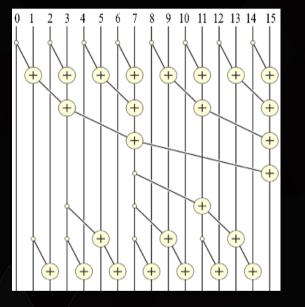
 $x \otimes 00 = x \text{ and } 00 \otimes x = x$ (rejecting non-zero crossing indices) $\Box 1 \otimes 1 \Box = \Box \Box \&$ updating cutoff (reduction and update) $10 \otimes 01 = 11$

(keeping the positive segment)

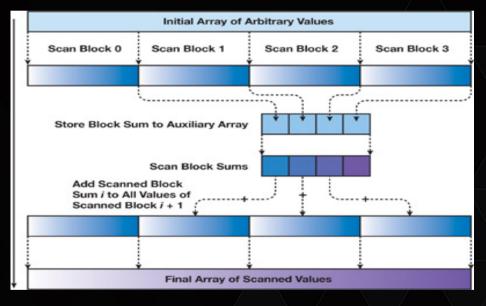
Cumulative phase $[a_1, a_2, a_3, ..., a_n] \rightarrow [a_1, a_1 \oplus a_2, a_1 \oplus a_2 \oplus a_3, ..., a_1 \oplus a_2 \oplus a_3 \cdots \oplus a_n]$

: Scan (parallel prefix sum) algorithm = work efficient parallel scan

In the lecture of W. Hwu (https://gist.github.com/wh5a/4500706#file-mp5-c)



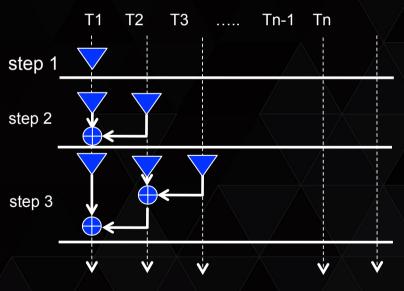
Basic idea of scan block for work efficient parallel scan (Lecture 14 in applied parallel programming ECE408/CS483/ECE498al, University of Illinois, 2007-2012 by Wen-mei W. Hwu)



GPU Gems 3 (a free ebook) Chapter 39. Parallel Prefix Sum (Scan) with CUDA

Bottolier-Curtet reconstruction

- Parallel code is NOT possible for the main steps of (r, n_e) pair reconstruction \rightarrow We apply data parallelism for the bunch of signals !
- We launch thread-kernel N times N is the number of pairs (data points) : Overheads are not avoidable for the loading time
- Fine-graining for the integral in each loop
 : for nth step, n(n-1)/2 loops → ~nlog(n) loops
- Parallelism :
 : multiple data x threads for integral



Step 1: Import density_profile class - specify the shot number of the data set when importing..

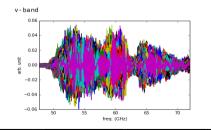
```
In [1]: from KSTARreflect import density_profile
```

In [2]: eprof = density_profile(shotnumber=10206, params="refQVW11383.sav")

Step 2: Check the structure of reflectometer data

```
In [3]: time, ndata, Ip = eprof.getTimeInfo( band='v')
        - number of segments = 3
        - time stamps (start and end of the segments):
        [['0.490' '0.540']
        ['0.996' '1.040']
        ['1.490' '1.540']]
        - number of data in the segments:
        [4999999 4999999 4999999]
        - plasma current of the segments:
        ['222 kA', '374 kA', '506 kA']
Step 3: Read a segment data (+ time slices information) of specified plasma shot
In [4]: eprof.setSignal( bands = 'qv', segidx = 1, sigstep = 4)
        .. reading time domain information (band = q) .....
```

- .. reading rf signal (band = q, segment index = 1)
- .. reading time domain information (band = v)
- .. reading rf signal (band = v, segment index = 1)



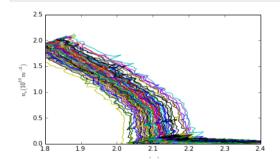
Step 4: Calculate density profiles (Signals --> Wavelet spectrogram --> Phase recovery --> Botollier-Curtet reconstruction)

In [8]: import time
 t0 = time.time()

l_prof = eprof.calcProfile()

print "- total computation time =", (time.time() - t0)*1000., 'ms'
nsig = len(l_prof)
print "- number of profiles =", nsig

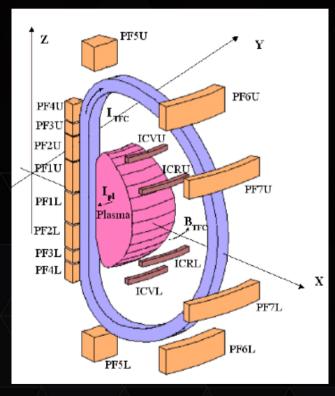
- total computation time = 474.127054214 ms
- number of profiles = 250

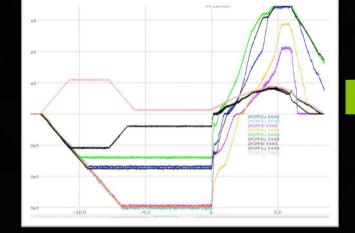


- 2.3 sec. for 1000 signals by Tesla® K20m (including initial loading time of code into GPU)
- 500 times faster than optimized IDL routine !
- Very easy to integrate with the data processing platform as a python class

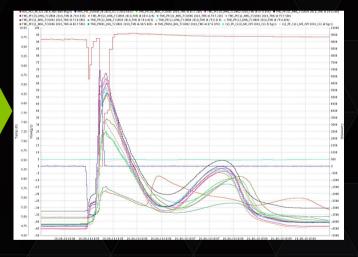
CASE #2. heat load of superconducting magnet by AC loss

Superconducting magnet system of KSTAR tokamak





Magnet current profile (~kA)



Magnet temperature (4~10K)

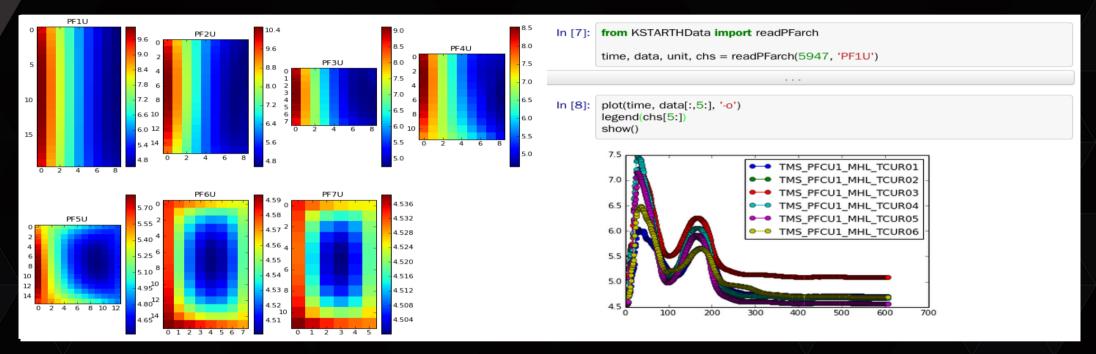
Zerodee (0-D) model of the superconducting PF CICCs

✓ The minimalist white-box (physics-based) model of superconducting CICC ...

 \checkmark Traditionally, this model has been used in the stage of magnet design...

- Just for quick estimation, for instance, of stability margin
- : It's simplicity allows extensive parametric study \leftarrow essential in the design phase ...

KSTAR hotspot code based on the zerodee (0-D) model



- Conservative (overestimated) estimation
- Independent calculation for each cross-section of the conductors
 - \rightarrow easy to be parallelized...

GPU CONFERENCE How to accelerate for real-time TH model (I)

Step 1 : Speed optimization of the main ODE routine

implicit scheme with iinearization

RK4 with the time step of stable condition

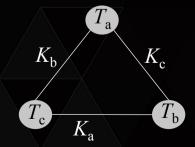
$$\frac{d}{dt} \begin{pmatrix} T_{st} \\ T_{he} \\ T_{jk} \end{pmatrix} = \begin{pmatrix} -\frac{K_{st-he} + K_{st-jk}}{C_{st}} & \frac{K_{st-he}}{C_{st}} & \frac{K_{st-jk}}{C_{st}} \\ \frac{K_{st-he}}{C_{he}} & -\frac{K_{st-he} + K_{he-jk}}{C_{he}} & \frac{K_{he-jk}}{C_{he}} \\ \frac{K_{st-jk}}{C_{jk}} & \frac{K_{he-jk}}{C_{jk}} & -\frac{K_{st-jk} + K_{he-jk}}{C_{jk}} \end{pmatrix} \begin{pmatrix} T_{st} \\ T_{he} \\ T_{jk} \end{pmatrix} + \begin{pmatrix} \dot{q}_{st} / C_{st} \\ 0 \\ 0 \end{pmatrix}$$

von Neumann stability condition should be satisfied for each row...

Our system has an analogy of cylindrical lattice.
 So, the Fourier component of the solution is ..
 For (a,b,c)=(1,2,3) (2,3,1) (3,1,2)

$$T_n^{(i)} = a^{(i)} e^{im\theta_n}$$

$$(\theta_a = 0, \ \theta_b = +\frac{2\pi}{3}, \ \theta_c = -\frac{2\pi}{3})$$

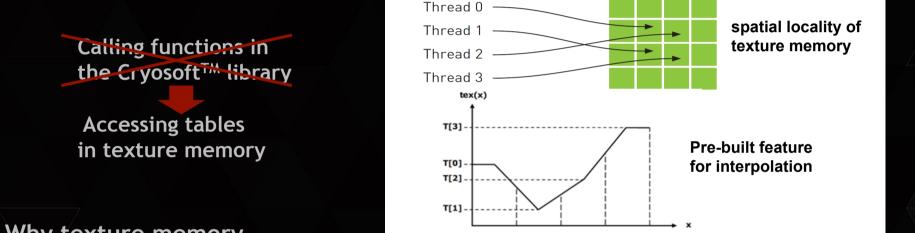


$$G|^{2} = \left|\frac{T_{a}^{(i+1)}}{T_{a}^{(i)}}\right|^{2} = \left\{1 - \Delta t \left(\frac{K_{b} + K_{c}}{C_{a}}\right)(1 - \cos\frac{2\pi}{3}m)\right\}^{2} + \Delta t^{2} \left(\frac{K_{b} + K_{c}}{C_{a}}\right)^{2} \sin^{2}\frac{2\pi}{3}m\right\}$$

Then, the stability condition is...
$$\forall a \quad |G|_{\max}^{2} < 1 \implies \Delta t < \min\left(C_{a} \left(\frac{K_{b} + K_{c}}{K_{b}^{2} + K_{c}^{2}}\right)\right)$$

How to accelerate for real-time TH model (II)

Step 2 : Speed optimization for computation of material properties

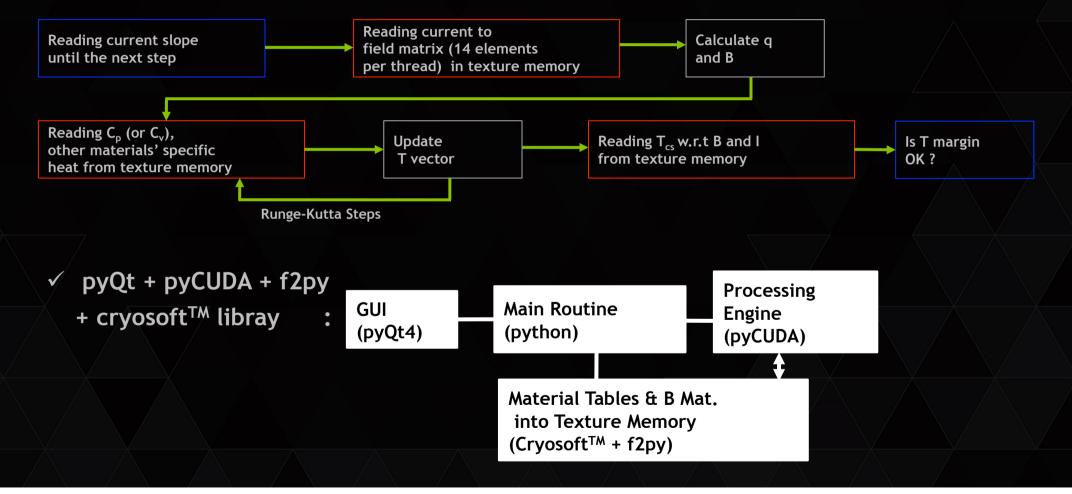


Why texture memory

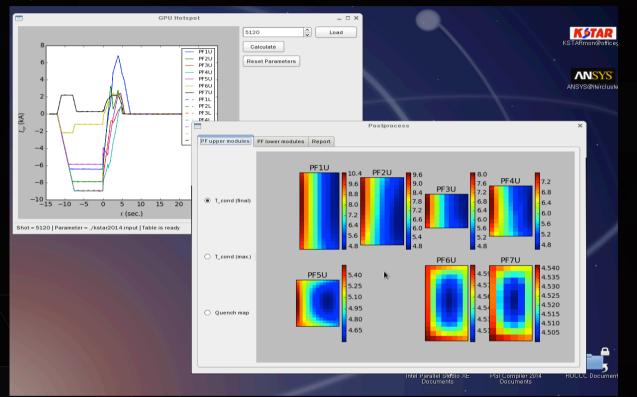
- Texture memory is optimized for 2D spatial locality (where it gets its name from).
- The addressing calculations can be calculated outside of the kernel in the hardware
- Data can be accessed by different variables in a single operation 8 bit and 16 bit data can be automatically converted to floating point numbers between 0 and 1.0

Plan to code in CUDA - data parallel model with SIMD cores

✓ For each thread (1824 threads for all PF cross-sections) :



So, what we have is ...



- ✓ 1.6 sec for 45 sec current scenario.
- ✓ Existing code in Fortran spends ~10 min for the same computation - <u>300</u> <u>times faster</u>
- Written as python class easy to be integrated into the interactive plat-form

Instantaneous analysis is possible for designed scenarios to check operation safety.

Within 13 ms to estimate 0.1 sec later \rightarrow feasible to real-time applications in speed

마치며...

- Nvidia® GPU을 이용한 (Tesla® K20m) 핵융합 플라즈마 진단데이터 가속처리기법을 소개하였다
 - : 다채널 대용량인 진단의 특성상 매우 효과적인 성능개선이 가능하다.
- ▶ 특히 대화형 분석도구 구현을 위해서는, pyCUDA을 이용하면 효율적인 코딩이 가능하며, 쉽게 통합 분석 환경에 이식할 수 있다.
- ▶ 향후 KSTAR 대화형 실험분석 platform 구현에 있어서 GPU를 기본 HW로 활용할 수 있는 라이브러리를 개발하고 있다.
- ▶ 대부분 진단은 Plasma 제어와 접목 가능하므로 (이 분야 중요 기술적의제), 핵융합에서 GPU의 RTOS 응용는 향후 흥미로운 연구가 될 것이다.

THANK YOU

JOIN THE CONVERSATION #GTC15 **f** in