
Audio-Driven Facial Animation by Joint End-to-End Learning of Pose
and Emotion

TERO KARRAS, NVIDIA
TIMO AILA, NVIDIA
SAMULI LAINE, NVIDIA
ANTTI HERVA, Remedy Entertainment
JAAKKO LEHTINEN, NVIDIA and Aalto University

1

Emotional
state

Articulation networkFormant analysis network

Audio
window

Output network

Vertex positions

Fig. 1. Our deep neural network for inferring facial animation from speech. The network takes approximately half a second of audio as input, and outputs the
3D vertex positions of a fixed-topology mesh that correspond to the center of the audio window. The network also takes a secondary input that describes the
emotional state. Emotional states are learned from the training data without any form of pre-labeling.

We present a machine learning technique for driving 3D facial animation

by audio input in real time and with low latency. Our deep neural network

learns a mapping from input waveforms to the 3D vertex coordinates of

a face model, and simultaneously discovers a compact, latent code that

disambiguates the variations in facial expression that cannot be explained by

the audio alone. During inference, the latent code can be used as an intuitive

control for the emotional state of the face puppet.

We train our network with 3–5 minutes of high-quality animation data

obtained using traditional, vision-based performance capture methods. Even

though our primary goal is to model the speaking style of a single actor,

our model yields reasonable results even when driven with audio from

other speakers with different gender, accent, or language, as we demonstrate

with a user study. The results are applicable to in-game dialogue, low-cost

localization, virtual reality avatars, and telepresence.

CCS Concepts: •Computingmethodologies→Animation;Neural net-
works; Supervised learning by regression; Learning latent representations;

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0730-0301/2017/7-ART94 $15.00

DOI: http://dx.doi.org/10.1145/3072959.3073658

Additional Key Words and Phrases: Facial animation, deep learning, audio

ACM Reference format:
Tero Karras, Timo Aila, Samuli Laine, Antti Herva, and Jaakko Lehtinen.

2017. Audio-Driven Facial Animation by Joint End-to-End Learning of Pose

and Emotion. ACM Trans. Graph. 36, 4, Article 94 (July 2017), 12 pages.

DOI: http://dx.doi.org/10.1145/3072959.3073658

1 INTRODUCTION
Expressive facial animation is an essential part of modern computer-

generated movies and digital games. Currently, vision-based per-

formance capture, i.e., driving the animated face with the observed

motion of a human actor, is an integral component of most produc-

tion pipelines. While the quality obtainable from capture systems is

steadily improving, the cost of producing high-quality facial anima-

tion remains high. First, computer vision systems require elaborate

setups and often also labor-intensive cleanup and other processing

steps. A second, less obvious issue is that whenever new shots are

recorded, the actors need to be on location, and ideally also retain

their appearance. This may be challenging if, for example, another

role requires growing a beard.

While audio-based performance capture algorithms are unlikely

to ever match the quality of vision systems, they offer complemen-

tary strengths. Most importantly, the tens of hours of dialogue

ACM Transactions on Graphics, Vol. 36, No. 4, Article 94. Publication date: July 2017.

94:2 • T. Karras et al.

spoken by in-game characters in many modern games is much too

expensive to produce using vision-based systems. Consequently,

common practice is to produce only key animations, such as cine-

matics, using vision systems, and rely on systems based on audio

and transcript for producing the bulk of in-game material. Unfor-

tunately, the quality of the animation produced by such systems

currently leaves much to be desired. Further, emerging real-time

applications in telepresence and virtual reality avatars present addi-

tional challenges due to the lack of transcript, wide variability in

user voices and physical setups, and stringent latency requirements.

Our goal is to generate plausible and expressive 3D facial anima-

tion based exclusively on a vocal audio track. For the results to look

natural, the animation must account for complex and codependent

phenomena including phoneme coarticulation, lexical stress, and

interaction between facial muscles and skin tissue [Edwards et al.

2016]. Hence, we focus on the entire face, not just the mouth and

lips. We adopt a data-driven approach, where we train a deep neural

network in an end-to-end fashion to replicate the relevant effects

observed in the training data.

At first, the problem may seem intractable because of its inherent

ambiguity—the same sounds can be uttered with vastly different

facial expressions, and the audio track simply does not contain

enough information to distinguish between the different variations

[Petrushin 1998].Whilemodern convolutional neural networks have

proven extremely effective in various inference and classification

tasks, they tend to regress toward the mean if there are ambiguities

in the training data.

To tackle these problems, we present three main contributions:

• A convolutional network architecture tailored to effectively

process human speech and generalize over different speak-

ers (Sections 3.1 and 3.2).

• A novel way to enable the network to discover variations

in the training data that cannot be explained by the audio

alone, i.e., apparent emotional state (Section 3.3).

• A three-way loss function to ensure that the network re-

mains temporally stable and responsive under animation,

even with highly ambiguous training data (Section 4.3).

Our method produces expressive 3D facial motion from audio in

real time and with low latency. To retain maximal independence

from the details of the downstream animation system, our method

outputs the per-frame positions of the control vertices of a fixed-

topology facial mesh. Alternative encodings [Lewis et al. 2014] such

as blend shapes or non-linear rigs can be introduced at later pipeline

stages, if needed for compression, rendering, or editability. We train

our model with 3–5 minutes of high-quality footage obtained using

traditional, vision-based performance capture methods. While our

goal is to model the speaking style of a single actor, our model yields

reasonable results even when driven with audio from other speakers

with different gender, accent, or language.

We see uses for this technology in in-game dialogue, low-cost

localization, virtual reality, and telepresence. It could also prove

useful in accommodating small script changes even in cinematics.

2 RELATED WORK
We will review prior art in systems whose input is audio or text and

output is 2D video or 3D mesh animation. We group the approaches

into linguistic and machine learning based models, and also review

methods that support apparent emotional states.

Models based on linguistics. A large body of literature exists for an-

alyzing and understanding the structure of language, and translating

it to anatomically credible facial animation [Lewis 1991; Matthey-

ses and Verhelst 2015]. Typically, an audio track is accompanied

with a transcript that helps to provide explicit knowledge about the

phoneme content. The animation is then based on the visual coun-

terpart of phonemes called visemes [Fisher 1968] through complex

rules of coarticulation. A well-known example of such a system is

the dominancemodel [Cohen andMassaro 1993; Massaro et al. 2012].

In general, there is a many-to-many mapping between phonemes

and visemes, as implemented in the dynamic visemes model of Tay-

lor et al. [2012] and in the recent work dubbed JALI [Edwards et al.

2016]. JALI factors the facial animation to lip and jaw movements,

based on psycholinguistic considerations, and is able to convinc-

ingly reproduce a range of speaking styles and apparent emotional

states independently of the actual speech content.

A core strength of these methods is the explicit control over the

entire process, which makes it possible to, e.g., explicitly guarantee

that the mouth closes properly when the puppet is spelling out a

bilabial (/m/,/b/,/p/) or that the lower lip touches the upper teeth
with labiodentals (/f/,/v/). Both are difficult cases even for vision-

based capture systems. The weaknesses include the accumulated

complexity of the process, language-specific rules, need for a near-

perfect transcript for good quality (typically done manually [Ed-

wards et al. 2016]), inability to react convincingly to non-phoneme

sounds, and lack of a principled way to animate other parts of the

face besides the jaw and lips.

FaceFX (www.facefx.com) is a widely used commercial package

that implements the most widely used linguistic models, including

the dominance model.

Models based onmachine learning. Here wewill group the systems

primarily based on how they use machine learning.

Voice puppetry [Brand 1999] is driven exclusively using audio,

and does not perform explicit analysis of the structure of the speech.

In the training stage, it estimates a hidden Markov model (HMM)

based on the observed dynamics of the face in a video. During

inference, the HMM is sampled and the most probable sequence

is synthesized through trajectory optimization that considers the

entire utterance. Subsequent work has improved the trajectory sam-

pling [Anderson et al. 2013; Wang and Soong 2015] and replaced

HMM, which does piecewise linear approximation, with alterna-

tive representations such as Gaussian process latent variable model

[Deena and Galata 2009; Deena et al. 2013], hidden semi-Markov

model [Schabus et al. 2014], or recurrent networks [Fan et al. 2016].

Alternatively, machine learning has been used for learning coartic-

ulation [Deng et al. 2006; Ezzat et al. 2002], followed by a concatena-

tion stage to synthesize animation, or for mapping between various

stages, such as phoneme classification [Kshirsagar and Magnenat-

Thalmann 2000], mapping text to phonemes and phonemes to visemes

ACM Transactions on Graphics, Vol. 36, No. 4, Article 94. Publication date: July 2017.

Audio-Driven Facial Animation by Joint End-to-End Learning of Pose and Emotion • 94:3

[Malcangi 2010], or mapping input audio features to control param-

eters of a Gaussian mixture model [Hofer and Richmond 2010].

Given that our goal is to produce 3D animation based on audio,

we are not inherently interested in the intermediate representa-

tions. Instead, we would like to formulate the entire mapping as an

end-to-end optimization task. The early experiments with neural

networks used audio to directly drive the control parameters of an

animated 3Dmesh [Hong et al. 2002; Massaro et al. 1999; Öhman and

Salvi 1999], but the networks back then were necessarily of trivial

complexity. We revisit this end-to-end formulation with deep con-

volutional networks, latest training methods, and problem-specific

contributions.

It is unfortunately difficult to do apples-to-apples comparisons

against previous systems that use machine learning. The majority

of work has focused on reusing captured video frames with con-

catenation, blending, and warping. Such image-based methods (e.g.,

[Anderson et al. 2013; Deena et al. 2013; Ezzat et al. 2002; Fan et al.

2016; Liu and Ostermann 2011; Wang and Soong 2015]) can produce

realistic results, but typically need to store a large corpus of frames

and are not directly applicable to applications such as games or VR

that need to animate and render 3D models from free viewpoints,

typically with flexible identities. The systems that do produce 3D

are often based on text input instead of audio [Schabus et al. 2014;

Wampler et al. 2007]. We are not aware of any publicly available im-

plementations of methods that would suit our needs, e.g. [Deng et al.

2006], and it would not be fair to compare against the result videos

of old methods since the quality standards have risen dramatically

in sync with the available computing power.

Extracting and controlling the emotional state. The automatic sep-

aration of speech and emotional state has been studied by several

authors. Chuang et al. [2002] build on the work of Tenenbaum and

Freeman [2000] and use a bilinear model for separating the apparent

emotional state from speech visemes. This was later generalized

in closely related topics to multilinear [Vasilescu and Terzopoulos

2003; Wampler et al. 2007] and non-linear models [Elgammal and

Lee 2004], as well as independent component analysis [Cao et al.

2003].

Cao et al. [2005] extract emotions using support vector machines,

and synthesize 3D animations based on speech and apparent emo-

tional state. They compute mappings between a set of pre-defined

emotional states, and let the user specify the state to be used for

animation synthesis. Deng et al. [2006] compute an eigenspace for

expressions based on a pre-defined set of emotional states. Wampler

et al. [2007] also allow a user-specified emotional state. Anderson et

al. [2013] use cluster adaptive training to derive a basis for the emo-

tional state so that it can be interpolated and extrapolated. They also

present a user study rating the level of realism in emotion synthesis,

covering several methods [Cao et al. 2005; Liu and Ostermann 2011;

Melenchon et al. 2009]. Jia et al. [2014] use neural networks to learn

a mapping from PAD (pleasure-displeasure, arousal-nonarousal, and

dominance-submissiveness) parameters to facial expressions.

What distinguishes our method from all these efforts is that in-

stead of having pre-defined categories for emotions, we let the

network learn a latent, low-dimensional descriptor that allows it

to explain the data. The descriptor’s parameter combinations can

Formant analysis network

Layer type Kernel Stride Outputs Activation

Autocorrelation - - 1×64×32 -

Convolution 1×3 1×2 72×64×16 ReLU

Convolution 1×3 1×2 108×64×8 ReLU

Convolution 1×3 1×2 162×64×4 ReLU

Convolution 1×3 1×2 243×64×2 ReLU

Convolution 1×2 1×2 256×64×1 ReLU

Articulation network

Layer type Kernel Stride Outputs Activation

Conv + concat 3×1 2×1 (256+E)×32×1 ReLU

Conv + concat 3×1 2×1 (256+E)×16×1 ReLU

Conv + concat 3×1 2×1 (256+E)× 8×1 ReLU

Conv + concat 3×1 2×1 (256+E)× 4×1 ReLU

Conv + concat 4×1 4×1 (256+E)× 1×1 ReLU

Output network

Layer type Kernel Stride Outputs Activation

Fully connected - - 150 Linear

Fully connected - - 15066 Linear

Table 1. Detailed breakdown of each part of our network. The autocorre-
lation layer performs fixed-function analysis of the input audio clip (Sec-
tion 3.2). In the articulation network, we concatenate an E-dimensional
vector representing the emotional state to the output of each convolution
layer after the ReLU activation, i.e., max(0, ·). The fully-connected layers at
the end expand the 256+E abstract features to 3D positions of 5022 vertices.
In total, the network has 3.7 million scalar weights when E = 16.

be later assigned any number of semantic meanings, e.g., “sad” or

“happy”, but those have no role in the learning process itself.

Residual motion. Almost, but not quite, human-like appearance

andmotion is often perceived as particularly creepy, an effect known

as the uncanny valley [Mori 1970]. Several authors have tried al-

leviating the effect by deducing additional motion, such as head

movements, eye saccades or blinks from audio (e.g., [Deng et al.

2004; Marsella et al. 2013]). In our work, we assume that such resid-

ual motion is driven by higher-level procedural controls, such as a

game engine, and limit our scope to motion that is directly related

to articulation.

3 END-TO-END NETWORK ARCHITECTURE
We will now describe the architecture of our network, along with

details on audio processing and the separation of emotional state

from the speech content.

Given a short window of audio, the task of our network is to infer

the facial expression at the center of the window. We represent the

expression directly as per-vertex difference vectors from a neutral

pose in a fixed-topology face mesh. Once the network is trained,

we animate the mesh by sliding a window over a vocal audio track

and evaluate the network independently at each time step. Even

though the network itself has no memory of past animation frames,

it produces temporally stable results in practice.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 94. Publication date: July 2017.

94:4 • T. Karras et al.

3.1 Architecture overview
Our deep neural network consists of one special-purpose layer, 10

convolutional layers, and 2 fully-connected layers. We divide it in

three conceptual parts, illustrated in Figure 1 and Table 1.

We start by feeding the input audio window to a formant analy-
sis network to produce a time-varying sequence of speech features

that will subsequently drive articulation. The network first extracts

raw formant information using fixed-function autocorrelation anal-

ysis (Section 3.2) and then refines it with 5 convolutional layers.

Through training, the convolutional layers learn to extract short-

term features that are relevant for facial animation, such as intona-

tion, emphasis, and specific phonemes. Their abstract, time-varying

representation is the output of the 5th convolutional layer.

Next, we feed the result to an articulation network that consists of
5 further convolutional layers that analyze the temporal evolution of

the features and eventually decide on a single abstract feature vector

that describes the facial pose at the center of the audio window.

As a secondary input, the articulation network accepts a (learned)

description of emotional state to disambiguate between different

facial expressions and speaking styles (Section 3.3). The emotional

state is represented as an E-dimensional vector that we concatenate

directly onto the output of each layer in the articulation network,

enabling the subsequent layers to alter their behavior accordingly.

Each layer l outputs Fl ×Wl ×Hl activations, where Fl is the num-

ber of abstract feature maps,Wl is dimension of the time axis, and

Hl is the dimension of the formant axis. We use strided 1×3 convolu-

tions in the formant analysis network to gradually reduce Hl while

increasing Fl , i.e., to push raw formant information to the abstract

features, until we have Hl = 1 and Fl = 256 at the end. Similarly,

we use 3×1 convolutions in the articulation network to decrease

Wl , i.e., to subsample the time axis by combining information from

the temporal neighborhood. We chose the specific parameters listed

in Table 1 because we found them to consistently perform well in

our datasets while leading to reasonable training times. The results

are not hugely sensitive to the exact number of layers or feature

maps, but we found it necessary to organize the convolutions in

two distinct phases to avoid overfitting. Importantly, the formant

analysis network performs the same operation at every point along

the time axis, so that we can benefit from the same training samples

at different time offsets.

The articulation network outputs a set of 256+E abstract features

that together represent the desired facial pose. We feed these fea-

tures to an output network to produce the final 3D positions of 5022

control vertices in our tracking mesh. The output network is imple-

mented as a pair of fully-connected layers that perform a simple

linear transformation on the data. The first layer maps the set of

input features to the weights of a linear basis, and the second layer

calculates the final vertex positions as a weighted sum over the

corresponding basis vectors. We initialize the second layer to 150

precomputed PCA components that together explain approximately

99.9% of the variance seen in the training data. In principle, we could

use a fixed basis to effectively train the earlier layers to output the

150 PCA coefficients. However, we have found that allowing the

basis vectors themselves to evolve during training yields slightly

better results.

3.2 Audio processing
The main input to our network is the speech audio signal that we

convert to 16 kHz mono before feeding it to the network. In our

experiments, we normalize the volume of each vocal track to utilize

the full [-1,+1] dynamic range, but we do not employ any other kind

of processing such as dynamic range compression, noise reduction,

or pre-emphasis filter.

The autocorrelation layer in Table 1 converts the input audio

window to a compact 2D representation for the subsequent convolu-

tional layers. Our approach is inspired by the source–filter model of

speech production [Benzeghiba et al. 2007; Lewis 1991], where the

audio signal is modeled as a combination of a linear filter (vocal tract)
and an excitation signal (vocal cords). The resonance frequencies
(formants) of the linear filter are known to carry essential infor-

mation about the phoneme content of the speech. The excitation

signal indicates the pitch, timbre, and other characteristics of the

speaker’s voice, which we hypothesize to be far less important for

facial animation, and thus we focus primarily on the formants to

improve the generalization over different speakers.

The standard method for performing source–filter separation

is linear predictive coding (LPC). LPC breaks the signal into sev-

eral short frames, solves the coefficients of the linear filter for each

frame based on the firstK autocorrelation coefficients, and performs

inverse filtering to extract the excitation signal. The resonance fre-

quencies of the filter are entirely determined by the autocorrelation

coefficients, so we choose to skip most of the processing steps and

simply use the autocorrelation coefficients directly as our repre-

sentation of the instantaneous formant information. This makes

intuitive sense, since the autocorrelation coefficients essentially

represent a compressed version of signal whose frequency content

approximately matches the power spectrum of the original signal.

The representation is a natural fit for convolutional networks, as

the layers can easily learn to estimate the instantaneous power of

specific frequency bands.

In practice, we use 520ms worth of audio as input, i.e., 260ms of

past and future samples with respect to the desired output pose. We

chose this value to capture relevant effects like phoneme coarticula-

tion without providing too much data that might lead to overfitting.

The input audio window is divided into 64 audio frames with 2x

overlap, so that each frame corresponds to 16ms (256 samples) and

consecutive frames are located 8ms (128 samples) apart. For each

audio frame, we remove the DC component and apply the standard

Hann window to reduce temporal aliasing effects. Finally, we cal-

culate K = 32 autocorrelation coefficients to yield a total of 64×32

scalars for the input audio window. Although much fewer autocor-

relations, e.g. K = 12, would suffice to identify individual phonemes,

we choose to retain more information about the original signal to

allow the subsequent layers to also detect variations in pitch.

Our approach differs from most of the previous work on speech

recognition, where the analysis step is typically based on a special-

ized techniques such as Mel-frequency cepstral coefficients (MFCC),

perceptual linear prediction (PLP), and rasta filtering [Benzeghiba

et al. 2007]. These techniques have enjoyed wide adoption mainly

because they lead to good linear separation of phonemes and conse-

quently work well with hidden Markov models. In our early tests,

ACM Transactions on Graphics, Vol. 36, No. 4, Article 94. Publication date: July 2017.

Audio-Driven Facial Animation by Joint End-to-End Learning of Pose and Emotion • 94:5

Fig. 2. What does silence look like? These are example frames from our
training set where the actor does not speak.

we tried several different input data representations and observed

that the autocorrelation coefficients were clearly superior for our

case.

3.3 Representation of emotional states
Inferring facial animation from speech is an inherently ambiguous

problem, because the same sound can be produced with very dif-

ferent facial expressions. This is especially true with the eyes and

eyebrows, since they have no direct causal relationship with sound

production. Such ambiguities are also problematic for deep neural

networks, because the training data will inevitably contain cases

where nearly identical audio inputs are expected to produce very

different output poses. Indeed, Figure 2 shows several examples of

conflicting training data where the input audio clip consists entirely

of silence. If the network has nothing else to work with besides the

audio, it will learn to output the statistical mean of the conflicting

outputs.

Our approach for resolving these ambiguities is to introduce a

secondary input to the network. We associate a small amount of

additional, latent data with each training sample, so that the network

has enough information to unambiguously infer the correct output

pose. Ideally, this additional data should encode all relevant aspects

of the animation in the neighborhood of a given training sample that

cannot be inferred from the audio itself, including different facial

expressions, speaking styles, and coarticulation patterns. Informally,

we wish the secondary input to represent the emotional state of
the actor. Besides resolving ambiguities in the training data, the

secondary input is also highly useful for inference—it allows us to

mix and match different emotional states with a given vocal track

to provide powerful control over the resulting animation.

One way to implement emotional states would be to manually

label or categorize the training samples based on the apparent emo-

tion [Anderson et al. 2013; Cao et al. 2005; Deng et al. 2006; Wampler

et al. 2007]. This approach is not ideal, however, because there is no

guarantee that a pre-defined labeling actually resolves ambiguities

in the training data to a sufficient degree. Instead of relying on pre-

defined labels, we adopt a data-driven approach where the network

automatically learns a succinct representation of the emotional state

as a part of the training process. This allows us to extract meaning-

ful emotional states even from in-character footage, as long as a

sufficient range of emotions is present.

We represent the emotional state as an E-dimensional vector,

where E is a tunable parameter that we set to 16 or 24 in our tests, and

initialize the components to random values drawn from a Gaussian

distribution. One such vector is allocated for each training sample,

and we refer to the matrix that stores these latent variables as the

emotion database. As illustrated in Figure 1, the emotional state is

appended to the list of activations of all layers of the articulation

network. This makes it a part of the computation graph of the

loss function (Section 4.3), and as a trainable parameter, it gets

updated along with the network’s weights during backpropagation.

The dimensionality of E is a tradeoff between two effects. If E is

too low, the emotional states fail to disambiguate variations in the

training data, leading to weak audio response. If E is too high, all

emotional states tend to become too specialized to be useful for

general inference (Section 5.1).

One potential concern with the emotion database is that unless

we constrain it in a meaningful way, it might learn to explicitly store

information that is also present in the audio. In a pathological case,

it could store E blend shape weights that determine much of the

facial expression, thus diminishing the role of audio and making the

network useless for processing material not seen during training.

The information provided by the audio is limited to short-term

effects within the 520ms interval by design. Consequently, a natu-

ral way to prevent the emotional states from containing duplicate

information is to forbid them from containing short-term variation.

Having the emotional states focus on longer-term effects is also

highly desirable for inference—we want the network to produce

reasonable animation even when the emotional state remains fixed.

We can express this requirement by introducing a dedicated reg-

ularization term in our loss function to penalize quick variations

in the emotion database, which leads to incremental smoothing of

the emotional states over the course of training. One important

limitation of our approach is that we cannot model blinking and

eye motion correctly since they do not correlate with the audio and

cannot be represented using the slowly varying emotional state.

While it may seem redundant to append the emotional state

to all layers of the articulation network, we have found this to

improve the results significantly in practice. We suspect that this

is because the emotional state aims to control the animation on

multiple abstraction levels, and the higher abstraction levels are

generally more difficult to learn. Connecting to the earlier layers

provides nuanced control over subtle animation features such as

coarticulation, whereas connecting to the later layers provides more

direct control over the output poses. It makes intuitive sense that the

early stages of training will need to concentrate on the latter, while

the later stages can concentrate on the former once the individual

poses are reasonably well represented.

The learned emotional states are just data without semantic mean-

ings (“sad”, “happy”, etc.). We defer the discussion about semantics

to Section 5.1 because they do not play a role in the network archi-

tecture or training.

4 TRAINING
We will now describe the aspects relevant to training our network:

how the training targets were obtained, what our dataset consists

of, dataset augmentation, loss function, and training setup.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 94. Publication date: July 2017.

94:6 • T. Karras et al.

Character 1 Character 2

Video frame Tracking mesh Video frame Tracking mesh

Fig. 3. The training targets were obtained using a vision-based pipeline that
uses streams from 9 HD cameras to output 3D positions of animated control
vertices for each frame.

4.1 Training targets
We obtained the 3D vertex positions used as training targets using

the commercial DI4D PRO system (www.di4d.com) that employs

nine synchronized video cameras at 30Hz to directly capture the

nuanced interactions of the skull, muscles, fascia and skin of an actor,

excluding high frequency details such as wrinkles. The benefit of

this system is that it allows us to bypass complex and expensive

facial rigging and tissue simulations for digital doubles. The input

and output data is illustrated in Figure 3.

As the first step, an unstructured mesh with texture and optical

flow data is reconstructed from the nine images captured for each

frame. A fixed-topology template mesh, created prior to the capture

work using a separate photogrammetry pipeline, is then projected on

to the unstructured mesh and associated with the optical flow. The

template mesh is tracked across the performance and any issues are

fixed semi-automatically in the DI4DTrack software by a tracking

artist. The position and orientation of the head are stabilized using a

few key vertices of the tracking mesh. Finally, the vertex positions of

the mesh are exported for each frame in the shot. These positions—

or more precisely the deltas from a neutral pose—are the desired

outputs of our network when given a window of audio during

training.

One limitation of video-based capture setups is that they cannot

capture the tongue since it is typically not visible in the images.

While the exact control of the tongue is highly relevant for speech

production, it is rarely visible so clearly that it would have to be

animated in detail.We thus leave the tongue as well as wrinkles, eyes

and residual head/body motion to higher level procedural animation

controls.

4.2 Training dataset
For each actor, the training set consists of two parts: pangrams and

in-character material. In general, the inference quality increases as

the training set grows, but a small training set is highly desirable

due to the cost of capturing high-quality training data. We feel that

3–5 minutes per actor represents a practical sweet spot.

Pangrams. This set attempts to cover the set of possible facial

motions during normal speech for a given target language, in our

case English. The actor speaks one to three pangrams, i.e., sentences

that are designed to contain as many different phonemes as possible,

in several different emotional tones to provide a good coverage of

the range of expression.

In-character material. This set leverages the fact that an actor’s

performance of a character is often heavily biased in terms of emo-

tional and expressive range for various dramatic and narrative rea-

sons. In case of a movie or a game production, this material can be

composed of the preliminary version of the script. Only the shots

that are deemed to support the different aspects of the character are

selected so as to ensure that the trained network produces output

that stays in character even if the inference is not perfect, or if

completely novel or out of character voice acting is encountered.

For Character 1, our training set consists of 9034 frames (5min

1s), of which 3872 come from pangrams and 5162 from in-character

material. Additionally, 1734 frames are reserved for validation.

For Character 2, our training set consists of 6762 frames (3min

45s), of which 1722 come from pangrams and 5040 from in-character

material. Additionally, we have 887 frames for validation.

4.3 Loss function
Given the ambiguous nature of our training data, we must take

special care to define a meaningful loss function that we wish to

optimize. We use a specialized loss function that consists of three

distinct terms: a position term to ensure that the overall location of

each output vertex is roughly correct, a motion term to ensure that

the vertices exhibit the right kind of movement under animation,

and a regularization term to discourage the emotion database from

containing short-term variation.

Simultaneous optimization of multiple loss terms tends to be

difficult in practice, because the terms can have wildly different

magnitudes and their balance may change in unpredictable ways

during training. The typical solution is to associate a pre-defined

weight with each term to ensure that none of them gets neglected by

the optimization. However, choosing optimal values for the weights

can be a tedious process of trial and error and it typically needs to

be repeated whenever the training set changes. To overcome these

issues, we introduce a normalization scheme that automatically

balances the loss terms with respect to their relative importance.

As a result, we automatically put an equal amount of effort into

optimizing each term and there is consequently no need to specify

any additional weights.

Position term. Our primary error metric is the mean of squared

differences between the desired output y and the output produced

by the network ŷ. For a given training sample x , we express this
using the position term P(x):

P(x) =
1

3V

3V∑
i=1

(
y(i)(x) − ŷ(i)(x)

)
2

(1)

Here, V represents the total number of output vertices and y(i)

denotes the ith scalar component of y = (y(1),y(2), . . . ,y(3V)). The

total number of output components is 3V , because our network

outputs the full 3D position for each vertex.

Motion term. Even though the position term ensures that the

output of our network is roughly correct at any given instant in

time, it is not sufficient to produce high-quality animation. We have

found that training the network with the position term alone leads

to a considerable amount of temporal instability, and the response

ACM Transactions on Graphics, Vol. 36, No. 4, Article 94. Publication date: July 2017.

Audio-Driven Facial Animation by Joint End-to-End Learning of Pose and Emotion • 94:7

to individual phonemes is generally weak. This motivates us to

optimize our network in terms of vertex motion as well: a given

output vertex should only move if it also moves in the training data,

and it should only move at the right time. We thus need a way to

measure vertex motion as a part of our loss function, similar to

Brand’s work on HMMs [1999], where both position and velocity

are optimized.

The standard approach for training neural networks is to iterate

over the training data in minibatches, where each minibatch consists

of B randomly selected training samples x1,x2, . . . ,xB . To account

for vertex motion, we draw the samples as B/2 temporal pairs, each
consisting of two adjacent frames. We define operatorm[·] as the

finite difference between the paired frames. We can now define the

motion termM(x):

M(x) =
2

3V

3V∑
i=1

(
m

[
y(i)(x)

]
−m

[
ŷ(i)(x)

])
2

(2)

The factor 2 appears becauseM is evaluated once per temporal pair.

Regularization term. Finally, we need to ensure that the network

correctly attributes short-term effects to the audio signal and long-

term effects to the emotional state as described in Section 3.3.We can

conveniently define a regularization term for our emotion database

using the same finite differencing operator as above:

R′(x) =
2

E

E∑
i=1

m
[
e(i)(x)

]
2

(3)

e(i)(x) denotes the ith component stored by the emotion database

for training sample x . Note that this definition does not explicitly

forbid the emotion database from containing short-term variation—

it merely discourages excess variation on the average. This is im-

portant, because our training data contains legitimate short-term

changes in the emotional state occasionally, and we do not want

the network to incorrectly try to explain them based on the audio

signal.

A major caveat with Eq. 3 is that R′(x) can be brought arbitrarily

close to zero by simply decreasing the magnitude of e(x) while
increasing the corresponding weights in the network. Drawing

on the idea of batch normalization [Ioffe and Szegedy 2015], we

remove this trivial solution by normalizing R′(x) with respect to

the observed magnitude of e(x):

R(x) = R′(x)

/ ©« 1

EB

E∑
i=1

B∑
j=1

e(i)(x j)
2ª®¬ (4)

Normalization. To balance our three loss terms, we leverage the

properties of the Adam optimization method [Kingma and Ba 2014]

that we use for training our network. In effect, Adam updates the

weights of the network according to the gradient of the loss function,

normalized in a component-wise fashion according to a long-term

estimate of its second raw moment. The normalization makes the

training resistant to differences in the magnitude of the loss function,

but this is only true for the loss function as a whole—not for the

individual terms. Our idea is to perform similar normalization for

each loss term individually. Using the position term as an example,

we estimate the second raw moment of P(x) for each minibatch and

maintain a moving average vPt across consecutive minibatches:

vPt = β · vPt−1 + (1 − β) ·
1

B

B∑
j=1

P(x j)
2

(5)

Here, t denotes the minibatch index and β is a decay parameter

for the moving average that we set to 0.99. We initialize vPt = 0

and correct our estimate to account for startup bias to get v̂Pt =

vPt /(1 − βt). We then calculate the average P(x) over the current

minibatch and normalize the value according to v̂Pt :

ℓP =
©« 1B

B∑
j=1

P(x j)
ª®¬
/ (√

v̂Pt + ϵ

)
(6)

ϵ is a small constant that we set to 10
−8

to avoid division by zero.

Repeating Equations 5 and 6 forM(·) and R(·), we express our final
loss function as a sum over the individual terms ℓ = ℓP + ℓM + ℓR .

Although it would be possible to further fine-tune the importance

of the loss terms through additional weights, we have not found

this to be beneficial.

4.4 Training data augmentation
To improve temporal stability and reduce overfitting, we employ

random time-shifting for our training samples.Whenever we present

a minibatch to the network, we randomly shift the input audio

window by up to 16.6ms in either direction (±0.5 frames at 30 FPS).

To compensate, we also apply the same shift for the desired output

pose through linear interpolation. We shift both training samples

in a temporal pair by the same amount, but use different random

shift amounts for different pairs. We also tried cubic interpolation

of outputs, but it did not work as well as linear.

As a crucial step to improve generalization and avoid overfitting,

we apply multiplicative noise to the input of every convolutional

layer [Srivastava et al. 2014]. The noise has the same magnitude

for every layer, and it is applied on a per-feature map basis so that

all activations of a given feature map are multiplied by the same

factor. We apply identical noise to paired training samples to get a

meaningful motion term. The formula for our noise is 1.4N (0, 1)
.

We do not apply any other kind of noise or augmentation on

our training samples besides the time-shifting of input/outputs and

multiplicative noise inside the network. We experimented with ad-

justing the volume, adding reverb (both long and short), performing

time-stretching and pitch-shifting, applying non-linear distortion,

random equalization, and scrambling the phase information but

none of these improved the results further.

4.5 Training setup and parameters
We have implemented our training setup using Theano [Theano

Development Team 2016] and Lasagne [Dieleman et al. 2015] that

internally use cuDNN [Chetlur et al. 2014] for GPU acceleration.

We train the network for 500 epochs using Adam [Kingma and Ba

2014] with the default parameters. Each epoch processes all train-

ing samples in a randomized order in minibatches of 100 training

samples (50 temporal pairs). The learning rate is ramped up tenfold

using a geometric progression during the first training epoch, and

ACM Transactions on Graphics, Vol. 36, No. 4, Article 94. Publication date: July 2017.

94:8 • T. Karras et al.

it is then decreased gradually according to 1/
√
t schedule. During

the last 30 epochs we ramp the learning rate down to zero using

a smooth curve, and simultaneously ramp Adam’s β1 parameter

from 0.9 to 0.5. The ramp-up removes an occasional glitch where the

network does not start learning at all, and the ramp-down ensures

that the network converges to a local minimum. The total training

time is 2h 55min for Character 1 and 1h 30min for Character 2 on

an NVIDIA Pascal Titan X.

The network weights are initialized following He et al. [2015].

The emotion database is initialized with zero-mean Gaussian noise

with E = 16,σ = 0.01 for Character 1 and E = 24,σ = 0.002

for Character 2. We had to hand-tune these parameters per actor,

while other parameters required no tuning. The differences are

probably explained by the fact that Character 1 mostly had the same

expression throughout the training set, while Character 2 was much

more lively and did various extraneous movements with his face.

5 INFERENCE AND RESULTS
Once trained, the network can be evaluated at arbitrary points in

time by selecting the appropriate audio window, leading to facial

animation at the desired frame rate.

On our Theano implementation, inference takes 6.3ms for a single

frame and 0.2ms/frame when a batch of 100 frames is processed

at once. Given that Theano is known for its large overheads, we

are confident that it would be possible to push the single frame

performance, which matters for real-time use, below 1ms by using

a more efficient framework, e.g., cuDNN directly.

The latency of our method is determined by the audio window

size, which currently reaches 260ms to the future. Coarticulation

sets a lower bound for the look-ahead; we have confirmed experi-

mentally that we can limit the look-ahead to 100ms during training

with minor degradation in quality, even though some coarticula-

tion effects are known to be longer [Schwartz and Savariaux 2014].

Shortening the look-ahead further than this leads to a quick drop in

perceived responsiveness, so a realistic lower bound for the latency

of our method therefore seems to be around 100ms. Methods relying

on explicit trajectory optimization (e.g. [Brand 1999; Deena et al.

2013; Fan et al. 2016]) have substantially higher latency.

5.1 Emotional states
When inferring the facial pose for novel audio, we need to supply

the network with an emotional state vector as a secondary input.

As part of training, the network has learned a latent E-dimensional

vector for each training sample, and our strategy is to mine this

emotion database for robust emotion vectors that can be used during

inference.

During training, the network attempts to separate out the latent

information—i.e., everything that is not inferable from the audio

alone—into the emotion database. However, this decomposition is

not perfect and some amount of crosstalk remains between articu-

lation and the overall expression. In practice, many of the learned

emotion vectors are only applicable in the neighborhood of their

corresponding training frames and are not necessarily useful for gen-

eral inference. This is to be expected, because our training data will

necessarily be too limited to cover all phonemes and coarticulation

effects for every observed emotional state.

E
m

ot
io

n
ve

ct
or

s

Time

Mouth area

always open

not opening

good response

rapid closure

}

}

}

Fig. 4. Visualization of the opening of the mouth during the course of an
audio clip (x -axis) under different constant emotion vector inputs. Each
point on the y-axis represents a different emotion vector extracted from the
learned database for the same clip. Blue and red indicate that the mouth is
closed and open, respectively. We observe that many emotion vectors have
problems with opening or closing the mouth properly. As the first step of
our database mining process, we rapidly cull emotion vectors that do not
respond well to audio in this way.

0.15

0.10

0.05

0

-0.05

-0.10

"Surprise" "Pain"

Fig. 5. Human-understandable semantic meanings for different emotion
vectors are assigned manually by examining the animation they produce.
The neural network itself is not interested in these semantic meanings; as far
it is concerned, the emotion vector is just data that helps to disambiguate
the audio.

We manually mine for robust emotion vectors using a three-step

process. The main problem in most learned emotion vectors is that

they deemphasize the motion of the mouth: when such a vector

is used as a constant input when performing inference for novel

audio, the apparent motion of the mouth is subdued. Our first step is

therefore to pick a few audio windows from our validation set that

contain bilabials and a few that contain vowels, for which the mouth

should be closed and open, respectively. We then scan the emotion

database for vectors that exhibit the desired behavior for all chosen

windows. Performing this preliminary culling for Character 1 re-

sulted in 100 candidate emotion vectors for further consideration.

Figure 4 illustrates how the response varies with different emotion

vectors. The depicted training shot contains one region of highly

responsive emotion vectors, from which one candidate was chosen

for further consideration.

The second step in the culling process is to play back the valida-

tion audio tracks and inspect the facial motion inferred with each

ACM Transactions on Graphics, Vol. 36, No. 4, Article 94. Publication date: July 2017.

Audio-Driven Facial Animation by Joint End-to-End Learning of Pose and Emotion • 94:9

Fig. 6. The emotional state has a large effect on the animation, as shown
on the accompanying video. These nine poses are inferred from the same
audio window using different emotion vectors.

of the candidate emotion vectors. At this stage, we discard emotion

vectors that result in subdued or spurious, unnatural motion, indi-

cating that the emotion vector is tainted with short-term effects.

This stage narrowed the set to 86 candidate emotion vectors for

Character 1. As the third and final step, we run inference on several

seconds of audio from a different speaker and eliminate emotion

vectors with muted or unnatural response. We have found that se-

verely attenuated response to a different speaker is a sign of lack of

generalization power, and tends to cause problems even with the

same speaker under varied articulation styles. With Character 1,

this step left 33 emotion vectors.

We then examine the output of the network for several novel

audio clips with every remaining emotion vector, and assign a se-

mantic meaning (e.g., “neutral”, “amused”, “surprised”, etc.) to each

of them, depending on the emotional state they convey (Figure 5).

Which semantic emotions remain depends entirely on the train-

ing material, and it will not be possible to extract, e.g., a “happy”

emotion if the training data does not contain enough such material

to be generalizable to novel audio. Figure 6 shows inferred facial

poses for Character 1 using the same audio window but different

emotion vectors. As can be seen, even after removing all but the

best performing emotion vectors there is still substantial variation

to choose from.

Performance capture Inference (single) Inference (ensemble)

Fig. 7. The graph shows the y-coordinate of the vertex marked with the red
dot as a function of time for performance capture and inference. We can
see that an ensemble prediction helps to remove small-scale jitter from the
inference results.

Character 1 Character 2 Character 1 Character 2

neutral neutral pose transferred

Fig. 8. Deformation transfer from Character 1 to Character 2.

Interestingly, we have found that emotion vectors that are mined

in this way behave well under interpolation, i.e., sweeping from one

emotion vector to another tends to produce natural-looking results.

This means that it is possible to vary the emotional state during

inference based on high-level information from a game engine, or

by manual keyframing.

5.2 Temporal stability
As can be seen from the accompanying video, the results are stable

in animation. The primary sources of temporal stability are the

motion term ℓM and time-shift augmentation, but even with these

techniques there is still a small amount of jitter left in the lip area at

4ms timescale for some inputs. This is likely due to aliasing between

neighboring audio frames around stops and plosives. We fix this via

ensembling: the network is evaluated twice for a given animation

frame, 4 ms apart in time, and the predictions are averaged. Related

approaches have been used before, at varying timescales, e.g. [Lewis

and Parke 1987; Taylor et al. 2016]. Figure 7 illustrates the effect.

Even with the motion term, time-shifting, and ensembling some

ambiguities remain in how the eyebrows should move. We thus

employ additional temporal smoothing for the upper part of the

face using a Gaussian filter with σt = 0.1 seconds.

5.3 Retargeting
When we train our model, the output network becomes specialized

for a particular mesh. In many applications we would like to drive

several different meshes with audio, and we support that via defor-

mation transfer [Sumner and Popović 2004], as shown in Figure 8.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 94. Publication date: July 2017.

94:10 • T. Karras et al.

PC vs. Ours PC vs. DM Ours vs. DM

Character 1

Clip 1 14 6 19 1 19 1

Clip 2 16 4 20 0 20 0

Clip 3 17 3 20 0 19 1

Clip 4 16 4 19 1 18 2

Clip 5 9 11 16 4 17 3

Clip 6 19 1 19 1 17 3

Clip 7 15 5 20 0 17 3

Clip 8 13 7 19 1 15 5

Character 2

Clip 1 17 3 19 1 15 5

Clip 2 15 5 18 2 15 5

Clip 3 15 5 19 1 20 0

Clip 4 18 2 19 1 16 4

Clip 5 17 3 19 1 17 3

Total

Votes 201 59 246 14 225 35

Ratio 77% 23% 95% 5% 87% 13%

Table 2. Results of the blind user study where we compare our method
(“Ours”) against video-based performance capture (“PC”) and dominance
model based animation (“DM”) through pairwise quality comparisons. The
input audio clips were taken from the held-out validation dataset of the
corresponding actor. See text for details of the setup.

6 EVALUATION
To assess the quality of our results, we conducted a blind user study

with 20 participants who had no professional experience on anima-

tion techniques. In the study, we compared the output of our method

(“Ours”) against video-based performance capture from the DI4D

system (“PC”) and against dominance model based animation [Co-

hen and Massaro 1993; Massaro et al. 2012] produced using FaceFX

software (“DM”). The audio clips used as inputs were taken from

the held-out validation dataset of the corresponding actor, i.e., they

were not used as part of training data when training our network.

The study featured two animated characters with a total of 13

audio clips that were 3–8 seconds long. For each clip a video was

rendered with each of the three methods. Out of these, three A vs. B

pairs were created (PC vs. Ours, PC vs. DM, Ours vs. DM), totaling

39 pairs of videos presented to the participants. These pairs were

presented as A vs. B choices in random order, also randomizing

which method was A and which was B for each individual question.

The participants, unaware of which videos originated from which

method, progressed through the video pairs, choosing the more

natural-looking animation of each pair before moving to the next

one. The study took approximately 10–15 minutes to complete. All

videos were presented at 30 frames per second with audio. For our

method, we assigned each audio clip a constant emotion vector that

was mined from the emotion database as explained in Section 5.1.

FaceFX creates the animation by interpolating between pre-defined

target poses: the neutral pose, 6 targets for the mouth, 3 for the

tongue, 8 for head rotation, and 3 for the eyes (blink, squint, eye-

brow raise). Ignoring the tongue, head rotation, and blinking, we

supplied FaceFX with 9 targets that we manually selected from our

training set. We spent about 2 hours per character to find targets

that matched the examples in FaceFX documentation as closely as

Character 1 Character 2

Male Female Male Female

Ours DM Ours DM Ours DM Ours DM

English 1 12 8 12 8 14 6 17 3

English 2 16 4 12 8 18 2 16 4

English 3 16 4 17 3 19 1 16 4

French 16 4 18 2 15 5 16 4

German 16 4 12 8 16 4 16 4

Italian 14 6 13 7 17 3 17 3

Spanish 19 1 13 7 20 0 19 1

Total

Votes 109 31 97 43 119 21 117 23

Ratio 78% 22% 69% 31% 85% 15% 84% 16%

Table 3. Results of the second user study where we compare our method
(“Ours”) against dominance model (“DM”) with several different speakers
and languages. Each row represents one male speaker and one female
speaker, evaluated separately for Character 1 and Character 2.

possible. For mouth-related target poses, the upper part of the face

was smoothly masked out so that no unwanted motion occurred

near the eyes, and the lower part of the face was similarly masked for

the two eye-related poses. We supplied FaceFX with the transcript

for each audio clip to be used as a basis for viseme analysis.

Table 2 shows the full results of the study, summed over the 20

participants. As expected, the output of video-based performance

capture was generally perceived as more natural than the anima-

tions synthesized by our method or the dominance model. The fifth

clip of Character 1, where our method is on par with performance

capture, is an interesting exception to this rule. Because both our

method and dominance model reach their highest scores against

performance capture in this clip, it appears that the surprising result

is caused by unnatural look of the performance capture data instead

of exceptionally good performance of our method.

Our method clearly outperforms the dominance model, winning

87% of the pairwise comparisons, and even in the worst-case clips

75% of the participants preferred our method (15 vs. 5 votes). Ad-

ditionally, our method fares much better in comparisons against

video-based performance capture. Estimating an objective quality

ranking for each of the methods would require a more elaborate user

study, but we can still observe that the vote between our method

and performance capture is closer to a tie than the vote between

our method and dominance model.

6.1 Generalization
To assess the capability of our network to generalize over different

speakers and languages, we conducted a second user study using

14 representative audio clips that we extracted from public domain

audio books hosted by LibriVox (www.librivox.org). We did not

look at the output of our network when selecting the audio clips, and

we did not use them in any way when training our network, tuning

the parameters, or mining the emotional states. We selected a total

of 6 clips for English, and 8 for French, German, Italian, and Spanish.

We further organized the clips by gender to form 7 pairs consisting

of one male speaker and one female speaker each. We used a similar

setup as in the first user study, and asked 20 participants to compare

ACM Transactions on Graphics, Vol. 36, No. 4, Article 94. Publication date: July 2017.

Audio-Driven Facial Animation by Joint End-to-End Learning of Pose and Emotion • 94:11

videos produced by our method (“Ours”) and dominance model

(“DM”) and choose the more natural-looking one. There were a total

of 28 pairs of videos presented to each participant, one for each

audio clip and each character. The videos were 8–13 seconds long

and the study took approximately 15–20 minutes to complete.

The results of the study are summarized in Table 3. For male

speakers, the number of participants that preferred our method is

roughly the same as in the first study. The number is somewhat

lower for female speakers, however. The likely explanation is that

our comparison videos featured a male character even for audio

from a female speaker, and it is possible that several participants

perceived the output of both methods as equally unnatural in this

case. The results also indicate that the variation between different

languages is considerably lower than the variation between different

speakers of the same language. This suggests that our method is

not overly sensitive to the input language per se—the capability to

generalize to novel audio is more likely related to the voice, speaking

style, and tempo of the particular speaker.

6.2 Accompanying video
Since it is impossible to demonstrate the quality of our animation

results using text and images, we refer the reader to the accom-

panying video. The video includes comparisons with video-based

performance capture and dominance model, as well as a final render

from a game engine. We also compare our results against dynamic

visemes and JALI using the original video and audio footage from

Taylor et al. [2012] and Edwards et al. [2016]. Note that in these

comparisons we drive our network using a speaker different from

the training set. We observe that our results are fluent, expressive,

and have good temporal stability in the entire face region.

Because our method generalizes well over different speakers, it

can also be used with synthetic audio. As an experiment, we ran our

method with audio that was synthesized using WaveNet [van den

Oord et al. 2016], a deep neural network that generates audio based

on input text. As shown in the video, our method produces natural-

looking animation from both male and female synthetic voices.

To further probe the limits our method, we ran it for the speakers

and languages featured in Table 3 with several different emotional

states. As shown in the video, the English-trained network responds

surprisingly well in most cases, but it can have trouble keeping up

if the input audio has very different tempo compared to the training

data.

7 FUTURE WORK
Our primary focus is on generating high-quality facial animation for

in-game dialogue, and we plan to continue evaluating the practical

value of our method in a production setting. We have also performed

several informal experiments to gauge the suitability of our method

for more general-purpose use, using audio clips recorded in a casual

setting with consumer-grade equipment and varying levels of back-

ground noise. In general, our method appears to remain responsive

as long as the input volume level is normalized to roughly match

the training data, and the animation looks plausible as long as it is

displayed in sync with the audio and the tempo of the speech is not

too fast. In the future, we hope to see a more principled study of

these and related effects in a realistic interactive setting with two

or more speakers.

We feel that the main shortcoming of our method is the lack

of fine detail present in the performance capture data. Combining

our approach with generative neural networks might enable better

synthesis of such detail and possibly also residual motion for, e.g.,

the eyes. While our method is able to produce plausible results for

several different emotional states based on just 5min of training data,

increasing the size of the dataset would likely improve the results

even further. It would be particularly interesting to train the network

simultaneously for several different characters in attempt to learn

a latent, unified representation of character identity. Conceivably,

one could also deduce the emotional state automatically during

inference based on a longer-term audio context.

ACKNOWLEDGEMENTS
We wish to thank Julian Kostov and Derek Hagen for acting, and

Markus Holtmanns for German voice acting; Pauli Kemppinen

for the ambient occlusion renderings, our colleagues at NVIDIA

Helsinki for participating in the user studies, and the deep learning

team for compute resources; JALI authors for comparison videos

and helpful suggestions on evaluation, Dynamic Visemes authors

for comparison videos, and WaveNet authors and LibriVox for audio

clips; David Luebke for helpful comments and Lance Williams for

pointers to related work.

REFERENCES
Robert Anderson, Björn Stenger, Vincent Wan, and Roberto Cipolla. 2013. Expressive

visual text-to-speech using active appearance models. In Proc. CVPR. 3382–3389.
Mohamed Benzeghiba, Renato De Mori, Olivier Deroo, Stephane Dupont, Teodora

Erbes, Denis Jouvet, Luciano Fissore, Pietro Laface, Alfred Mertins, Christophe Ris,

and others. 2007. Automatic speech recognition and speech variability: A review. In

Speech Communication, Vol. 49. 763–786.
Matthew Brand. 1999. Voice Puppetry. In Proc. ACM SIGGRAPH. 21–28.
Yong Cao, Petros Faloutsos, and Frédéric Pighin. 2003. Unsupervised Learning for

Speech Motion Editing. In Proc. SCA. 225–231.
Yong Cao, Wen C. Tien, Petros Faloutsos, and Frédéric Pighin. 2005. Expressive Speech-

driven Facial Animation. ACM Trans. Graph. 24, 4 (2005), 1283–1302.
Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran,

Bryan Catanzaro, and Evan Shelhamer. 2014. cuDNN: Efficient Primitives for Deep

Learning. arXiv:1410.0759 (2014).
E. S. Chuang, F. Deshpande, and C. Bregler. 2002. Facial expression space learning. In

Proc. Pacific Graphics. 68–76.
Michael M. Cohen and DominicW. Massaro. 1993. Modeling Coarticulation in Synthetic

Visual Speech. In Models and Techniques in Computer Animation. 139–156.
Salil Deena and Aphrodite Galata. 2009. Speech-Driven Facial Animation Using a

Shared Gaussian Process Latent Variable Model. In Proc. Symposium on Advances in
Visual Computing: Part I. 89–100.

S. Deena, S. Hou, and A. Galata. 2013. Visual Speech Synthesis Using a Variable-

Order Switching Shared Gaussian Process Dynamical Model. IEEE Transactions on
Multimedia 15, 8 (2013), 1755–1768.

Zhigang Deng, Shri Narayanan, Carlos Busso, and Ulrich Neumann. 2004. Audio-based

Head Motion Synthesis for Avatar-based Telepresence Systems. In Proc. Workshop
on Effective Telepresence. 24–30.

Zhigang Deng, Ulrich Neumann, J. P. Lewis, Tae-Yong Kim, Murtaza Bulut, and

Shrikanth Narayanan. 2006. Expressive Facial Animation Synthesis by Learning

Speech Coarticulation and Expression Spaces. IEEE TVCG 12, 6 (2006), 1523–1534.

Sander Dieleman, Jan Schlüter, Colin Raffel, Eben Olson, Søren Kaae Sønderby, and

others. 2015. Lasagne: First release. (2015).

Pif Edwards, Chris Landreth, Eugene Fiume, and Karan Singh. 2016. JALI: An Animator-

centric Viseme Model for Expressive Lip Synchronization. ACM Trans. Graph. 35, 4
(2016), 127:1–127:11.

A. Elgammal and Chan-Su Lee. 2004. Separating style and content on a nonlinear

manifold. In Proc. CVPR, Vol. 1. 478–485.
Tony Ezzat, Gadi Geiger, and Tomaso Poggio. 2002. Trainable Videorealistic Speech

Animation. ACM Trans. Graph. 21, 3 (2002), 388–398.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 94. Publication date: July 2017.

94:12 • T. Karras et al.

Bo Fan, Lei Xie, Shan Yang, LijuanWang, and Frank K. Soong. 2016. A deep bidirectional

LSTM approach for video-realistic talking head. Multimedia Tools and Applications
75, 9 (2016), 5287–5309.

Cletus G. Fisher. 1968. Confusions Among Visually Perceived Consonants. JSLHR 11

(1968), 796–804.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving Deep

into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.

arXiv:1502.01852 (2015).
Gregor Hofer and Korin Richmond. 2010. Comparison of HMM and TMDN Methods

for Lip Synchronisation. In Proc. Interspeech. 454–457.
Pengyu Hong, Zhen Wen, and T. S. Huang. 2002. Real-time Speech-driven Face Ani-

mation with Expressions Using Neural Networks. Trans. Neur. Netw. 13, 4 (2002),
916–927.

Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift. arXiv:1502.03167 (2015).

Jia Jia, Zhiyong Wu, Shen Zhang, Helen M. Meng, and Lianhong Cai. 2014. Head

and facial gestures synthesis using PAD model for an expressive talking avatar.

Multimedia Tools and Applications 73, 1 (2014), 439–461.
Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization.

arXiv:1412.6980 (2014).
S. Kshirsagar and N. Magnenat-Thalmann. 2000. Lip synchronization using linear

predictive analysis. In Proc. ICME, Vol. 2. 1077–1080.
John Lewis. 1991. Automated lip-sync: Background and techniques. The Journal of

Visualization and Computer Animation 2, 4 (1991), 118–122.

J. P. Lewis, Ken Anjyo, Taehyun Rhee, Mengjie Zhang, Fred Pighin, and Zhigang Deng.

2014. Practice and Theory of Blendshape Facial Models. In Eurographics (State of
the Art Reports).

J. P. Lewis and F. I. Parke. 1987. Automated Lip-synch and Speech Synthesis for

Character Animation. In Proc. SIGCHI/GI Conference on Human Factors in Computing
Systems and Graphics Interface. 143–147.

K. Liu and J. Ostermann. 2011. Realistic facial expression synthesis for an image-based

talking head. In Proc. ICME. 1–6.
M. Malcangi. 2010. Text-driven avatars based on artificial neural networks and fuzzy

logic. Int. J. Comput. 4, 2 (2010), 61–69.
Stacy Marsella, Yuyu Xu, Margaux Lhommet, Andrew Feng, Stefan Scherer, and Ari

Shapiro. 2013. Virtual Character Performance from Speech. In Proc. SCA. 25–35.
D. W. Massaro, J. Beskow, M. M. Cohen, C. L. Fry, and T. Rodriguez. 1999. Picture my

voice: Audio to visual speech synthesis using artificial neural networks. In Proc.
AVSP. #23.

D. W. Massaro, M. M. Cohen, R. Clark, and M. Tabain. 2012. Animated speech: Research

progress and applications. In Audiovisual Speech Processing. 309–345.
Wesley Mattheyses and Werner Verhelst. 2015. Audiovisual speech synthesis: An

overview of the state-of-the-art. Speech Communication 66 (2 2015), 182–217.

J. Melenchon, E. Martinez, F. De La Torre, and J. A. Montero. 2009. Emphatic Visual

Speech Synthesis. IEEE Transactions on Audio, Speech, and Language Processing 17,

3 (2009), 459–468.

M. Mori. 1970. Bukimi no tani (The uncanny valley). Energy 7, 4 (1970), 33–35.

T. Öhman and G. Salvi. 1999. Using HMMs and ANNs for mapping acoustic to visual

speech. IEEE Journal of Selected Topics in Signal Processing 40, 1 (1999), 45–50.

Valery A. Petrushin. 1998. How well can People and Computers Recognize Emotions

in Speech?. In Proc. AAAI Fall Symp. 141–145.
D. Schabus, M. Pucher, and G. Hofer. 2014. Joint Audiovisual Hidden Semi-Markov

Model-Based Speech Synthesis. IEEE Journal of Selected Topics in Signal Processing
8, 2 (2014), 336–347.

JL Schwartz and C Savariaux. 2014. No, there is no 150 ms lead of visual speech on

auditory speech, but a range of audiovisual asynchronies varying from small audio

lead to large audio lag. PLoS Computational Biology 10, 7 (2014).

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from

Overfitting. Journal of Machine Learning Research 15 (2014), 1929–1958.

Robert W. Sumner and Jovan Popović. 2004. Deformation Transfer for Triangle Meshes.

ACM Trans. Graph. 23, 3 (2004), 399–405.
Sarah Taylor, Akihiro Kato, Ben Milner, and Iain Matthews. 2016. Audio-to-Visual

Speech Conversion using Deep Neural Networks. In Proc. Interspeech. 1482–1486.
Sarah L. Taylor, MosheMahler, Barry-John Theobald, and IainMatthews. 2012. Dynamic

Units of Visual Speech. In Proc. SCA. 275–284.
Joshua B. Tenenbaum and William T. Freeman. 2000. Separating Style and Content

with Bilinear Models. Neural Comput. 12, 6 (2000), 1247–1283.
Theano Development Team. 2016. Theano: A Python framework for fast computation

of mathematical expressions. arXiv:1605.02688 (2016).
Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex

Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. 2016. WaveNet:

A Generative Model for Raw Audio. arXiv:1609.03499 (2016).
M. Alex O. Vasilescu and Demetri Terzopoulos. 2003. Multilinear Subspace Analysis of

Image Ensembles. In Proc. CVPR, Vol. 2. 93–99.

KevinWampler, Daichi Sasaki, Li Zhang, and Zoran Popović. 2007. Dynamic, Expressive

Speech Animation from a Single Mesh. In Proc. SCA. 53–62.
Lijuan Wang and Frank K. Soong. 2015. HMM trajectory-guided sample selection

for photo-realistic talking head. Multimedia Tools and Applications 74, 22 (2015),
9849–9869.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 94. Publication date: July 2017.

	Abstract
	1 Introduction
	2 Related Work
	3 End-to-End Network Architecture
	3.1 Architecture overview
	3.2 Audio processing
	3.3 Representation of emotional states

	4 Training
	4.1 Training targets
	4.2 Training dataset
	4.3 Loss function
	4.4 Training data augmentation
	4.5 Training setup and parameters

	5 Inference and Results
	5.1 Emotional states
	5.2 Temporal stability
	5.3 Retargeting

	6 Evaluation
	6.1 Generalization
	6.2 Accompanying video

	7 Future work
	References

