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A Decade of Scientific Computing with GPUs

2006 2008 2012 20162010 2014

Fermi: World’s 
First HPC GPU

Oak Ridge Deploys World’s 
Fastest Supercomputer w/ GPUs

World’s First Atomic 
Model of HIV Capsid

GPU-Trained AI Machine 
Beats World Champion in Go

Stanford Builds AI 
Machine using GPUs

World’s First 3-D Mapping 
of Human Genome

CUDA Launched

World’s First GPU 
Top500 System

Google Outperform 
Humans in ImageNet

Discovered How H1N1 
Mutates to Resist Drugs

AlexNet beats expert code 
by huge margin using GPUs

Stream Processing 
@ Stanford
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GPUs Enable Science
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18,688 NVIDIA Tesla K20X GPUs

27 Petaflops Peak: 90% of Performance from GPUs

17.59 Petaflops Sustained Performance on Linpack

TITAN
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U.S. to Build Two Flagship Supercomputers
Pre-Exascale Systems Powered by the Tesla Platform

100-300 PFLOPS Peak

IBM POWER9 CPU + NVIDIA Volta GPU

NVLink High Speed Interconnect

40 TFLOPS per Node, >3,400 Nodes

2017

Summit & Sierra Supercomputers
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Fastest AI Supercomputer in TOP500
4.9 Petaflops Peak FP64 Performance
19.6 Petaflops DL FP16 Performance
124 NVIDIA DGX-1 Server Nodes

Most Energy Efficient Supercomputer
#1 on Green500 List
9.5 GFLOPS per Watt
2x More Efficient than Xeon Phi System

13 DGX-1 Servers in Top500

38 DGX-1 Servers for Petascale supercomputer

55x less servers, 12x less power vs CPU-only 
supercomputer of similar performance

DGX SATURNV
World’s Most Efficient AI Supercomputer

FACTOIDS
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EXASCALE APPLICATIONS ON SATURNV

Gflop/s
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# of CPU Nodes 
(in SuperMUC Supercomputer)

1x DGX-1: 8K Gflop/s

2x DGX-1: 15K Gflop/s

4x DGX-1: 20K Gflop/s

2K Gflop/s
3K Gflop/s

5K Gflop/s

7K Gflop/s

LQCD- Higher Energy Physics
SATURNV DGX Servers vs SuperMUC Supercomputer

QUDA version 0.9beta, using double-half mixed precision
DDalphaAMG using double-single

# of CPU Servers to Match 
Performance of SATURNV 

2,300
CPU Servers

S3D: Discovering New Fuel for Engines 

3,800
CPU Servers

SPECFEM3D: Simulating Earthquakes
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Exascale
System
Sketch
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GPUs Enable Deep Learning



11

GPUs + Data + DNNs 
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74%

96%

2010 2011 2012 2013 2014 2015

Deep Learning

THE STAGE IS SET FOR THE AI REVOLUTION

2012: Deep Learning researchers
worldwide discover GPUs

2015: ImageNet — Deep Learning achieves
superhuman image recognition 

2016: Microsoft’s Deep Learning system 
achieves new milestone in speech recognition

Human

Hand-coded CV

Microsoft, Google
3.5% error rate 

Microsoft
09/13/16

“The Microsoft 2016 Conversational Speech Recognition 
System.”   W. Xiong, J. Droppo, X. Huang, F. Seide, M. 

Seltzer, A. Stolcke, D. Yu, G. Zweig. 2016
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A New era of computing

PC INTERNET

AI & INTELLIGENT DEVICES

MOBILE-CLOUD
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Deep Learning Explodes at Google

Android apps

Drug discovery

Gmail

Image understanding

Maps

Natural language understanding

Photos

Robotics research

Speech

Translation

YouTube

Jeff Dean's talk at TiECon, May 7, 2016
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Deep Learning Everywhere

INTERNET & CLOUD

Image Classification
Speech Recognition

Language Translation
Language Processing
Sentiment Analysis
Recommendation

MEDIA & ENTERTAINMENT

Video Captioning
Video Search

Real Time Translation

AUTONOMOUS MACHINES

Pedestrian Detection
Lane Tracking

Recognize Traffic Sign

SECURITY & DEFENSE

Face Detection
Video Surveillance
Satellite Imagery

MEDICINE & BIOLOGY

Cancer Cell Detection
Diabetic Grading
Drug Discovery
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Now “Superhuman” at Many Tasks

Speech recognition

Image classification and detection

Face recognition

Playing Atari games

Playing Go
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Deep Learning Enables Science
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Deep learning enables SCIENCE

Classify Satellite Images for 
Carbon Monitoring

Analyze Obituaries on the Web for 
Cancer-related Discoveries

Determine Drug Treatments to Increase 
Child’s Chance of Survival

NASA AMES
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Prof. Kyle Cranmer

The ATLAS Experiment

19

ML Filters “events” 
from the Atlas 

detector at the LHC

600M events/sec

Cranmer - NIPS 2016 Keynote
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Using ML to Approximate Fluid Dynamics

“Data-driven Fluid Simulations using Regression Forests” http://people.inf.ethz.ch/ladickyl/fluid_sigasia15.pdf

“… Implementation led to a speed-up of one to three orders of magnitude 

compared to the state-of-the-art position-based fluid solver and runs in 

real-time for systems with up to 2 million particles”
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Tompson et al. “Accelerating Eulerian Fluid Simulation With Convolutional Networks,” 
arXiv preprint, 2016

Fluid Simulation with CNNs
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Using ML to Approximate Schrodinger Equation

“Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning”, Rupp et al., Physical Letters

“For larger training sets, N >= 1000, the accuracy of the 

ML model becomes competitive with mean-field 

electronic structure theory—at a fraction of 

the computational cost.”
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Deep Learning has an insatiable demand for 
computing performance



24

GPUs enabled Deep Learning
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GPUs now Gate DL Progress

IMAGE RECOGNITION SPEECH RECOGNITION

Important Property of Neural Networks

Results get better with 

more data +
bigger models +

more computation

(Better algorithms, new insights and 
improved techniques always help, too!)

2012
AlexNet

2015
ResNet

152 layers

22.6 GFLOP

~3.5% error
8 layers

1.4 GFLOP

~16% Error

16X
Model

2014
Deep Speech 1

2015
Deep Speech 2

80 GFLOP
7,000 hrs of Data

~8% Error

10X
Training Ops

465 GFLOP

12,000 hrs of Data

~5% Error
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Pascal “5 Miracles” 
Boost Deep Learning 65X

Pascal — 5 Miracles NVIDIA DGX-1 Supercomputer 65X in 4 yrs Accelerate Every Framework

PaddlePaddle
Baidu Deep Learning

Pascal

16nm FinFET

CoWoS HBM2

NVLink

cuDNN

Chart: Relative speed-up of images/sec vs K40 in 2013. AlexNet training throughput based on 20 iterations. CPU: 1x E5-2680v3 12 Core 2.5GHz. 128GB System Memory, Ubuntu 14.04. M40 datapoint: 8x M40 GPUs in a node P100: 8x P100 NVLink-enabled. 

Kepler

Maxwell

Pascal

X

10X

20X

30X

40X

50X

60X

70X

2013 2014 2015 2016



27

Pascal GP100

10 TeraFLOPS FP32

20 TeraFLOPS FP16

16GB HBM – 750GB/s

300W TDP

67GFLOPS/W (FP16)

16nm process

160GB/s NV Link 

Power Regulation
HBM Stacks

GPU Chip

Backplane Connectors
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TESLA P4 & P40 
INFERENCING ACCELERATORS

Pascal Architecture  |  INT8

P40: 250W    |  40X Energy Efficient versus CPU

P40: 250W    |  40X Performance versus CPU
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TensorRT
PERFORMANCE OPTIMIZING 
INFERENCING ENGINE

FP32, FP16, INT8   |  Vertical & Horizontal Fusion  |  Auto-Tuning 

VGG, GoogLeNet, ResNet, AlexNet & Custom Layers

Available Today: developer.nvidia.com/tensorrt
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NVLINK enables scalability
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NVLINK – Enables Fast Interconnect, PGAS Memory

GPU

Memory

System Interconnect

GPU

Memory

NVLINK



32NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

NVIDIA DGX-1
WORLD’S FIRST DEEP LEARNING SUPERCOMPUTER

170 TFLOPS

8x Tesla P100 16GB

NVLink Hybrid Cube Mesh

Optimized Deep Learning Software

Dual Xeon

7 TB SSD Deep Learning Cache

Dual 10GbE, Quad IB 100Gb

3RU – 3200W
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Training Datacenter

Intelligent Devices
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“Billions of INTELLIGENT devices”

“Billions of intelligent devices will take advantage of DNNs 
to provide personalization and localization as GPUs 
become faster and faster over the next several years.”

— Tractica
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JETSON TX1 
EMBEDDED AI SUPERCOMPUTER

10W  |  1 TF FP16  |  >20 images/sec/W 
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INTRODUCING 
XAVIER
AI SUPERCOMPUTER SOC

7 Billion Transistors 16nm FF

8 Core Custom ARM64 CPU

512 Core Volta GPU

New Computer Vision Accelerator

Dual 8K HDR Video Processors

Designed for ASIL C Functional Safety

20 TOPS DL

160 SPECINT

20W
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AI TRANSPORTATION — $10T INDUSTRY

PERCEPTION AI PERCEPTION AI LOCALIZATION DRIVING AI

DEEP LEARNING
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NVIDIA DRIVE PX 2
AutoCruise to Full Autonomy — One Architecture

Full Autonomy

AutoChauffeur

AutoCruise

AUTONOMOUS DRIVING
Perception, Reasoning, Driving

AI Supercomputing, AI Algorithms, Software

Scalable Architecture
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ANNOUNCING Driveworks alpha 1
OS FOR SELF-DRIVING CARS

DRIVEWORKS

PilotNet

OpenRoadNet

DriveNet

Localization

Path Planning

Traffic Prediction

Action Engine

Occupancy Grid
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NVIDIA BB8 AI CAR
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Nvidia AI self-driving cars 
in development

Baidu nuTonomy Volvo WEpodsTomTom
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NVAIL
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AI Pioneers Pushing state-of-the-art

Reasoning, Attention, Memory — Long-term memory for NN

End-to-end training for autonomous flight and driving

Generic agents — Understand and predict behavior

RNN for long-term dependencies & multiple time scales

Unsupervised Learning — Generative Models

Deep reinforcement learning for autonomous AI agents

Reinforcement learning — Hierarchical and multi-agent

Semantic 3D reconstruction
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Yasuo Kuniyoshi

Professor, School of Info Sci & Tech

Director, AI Center (Next Generation Intelligence Science Research Center)

The University of Tokyo
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Challenge:
Provide Continued Performance 

Improvement
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But Moore’s Law is Over

C Moore, Data Processing in ExaScale-ClassComputer Systems, Salishan, April 2011



Its not about the FLOPs

16nm chip, 10mm on a side, 200W

DFMA 0.01mm2 10pJ/OP – 2GFLOPs

A chip with 104 FPUs:

100mm2

200W

20TFLOPS

Pack 50,000 of these in racks

1EFLOPS

10MW 



Overhead

Locality



CPU
126 pJ/flop (SP)

Optimized for Latency

Deep Cache Hierarchy

Broadwell E5 v4
14 nm

GPU
28 pJ/flop (SP)

Optimized for Throughput

Explicit Management
of On-chip Memory

Pascal
16 nm



Fixed-Function Logic is Even More 
Efficient

Energy/Op

CPU (scalar) 1.7nJ

GPU 30pJ

Fixed-Function 3pJ



How is Power Spent in a CPU?

In-order Embedded OOO Hi-perf

Clock + Control Logic

24%

Data Supply

17%

Instruction Supply

42%

Register File

11%

ALU   6%
Clock + Pins

45%

ALU

4%

Fetch

11%

Rename

10%

Issue

11%

RF

14%

Data
Supply

5%

Dally [2008] (Embedded in-order CPU) Natarajan [2003] (Alpha 21264)



Overhead 

985pJ

Payload

Arithmetic

15pJ
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ORF ORFORF

LS/BRFP/IntFP/Int

To LD/ST

L0Addr

L1Addr

Net

LM 

Bank
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64 threads

4 active threads

2 DFMAs (4 FLOPS/clock)

ORF bank: 16 entries (128 Bytes)

L0 I$: 64 instructions (1KByte)

LM Bank: 8KB (32KB total)



Simpler Cores 
= Energy Efficiency

Source: Azizi [PhD 2010]



Overhead 

15pJ

Payload

Arithmetic

15pJ



64-bit DP
20pJ 26 pJ 256 pJ

1 nJ

500 pJ Efficient
off-chip link

256-bit buses

16 nJ
DRAM
Rd/Wr

256-bit access
8 kB SRAM 50 pJ

20mm

Communication Dominates Arithmetic

28nm CMOS



Processor Technology 40 nm 10nm

Vdd (nominal) 0.9 V 0.7 V

DFMA energy 50 pJ 7.6 pJ

64b 8 KB SRAM Rd 14 pJ 2.1 pJ

Wire energy (256 bits, 10mm) 310 pJ 174 pJ

Memory Technology 45 nm 16nm

DRAM interface pin bandwidth 4 Gbps 50 Gbps

DRAM interface energy 20-30 pJ/bit 2 pJ/bit

DRAM access energy 8-15 pJ/bit 2.5 pJ/bit

Keckler [Micro 2011], Vogelsang [Micro 2010]

Energy Shopping List

FP Op lower bound

=

4 pJ





GRS Test Chips

Probe Station

Test Chip #1 on Board

Test Chip #2 fabricated on production GPU

Eye Diagram from Probe
Poulton et al. ISSCC 2013, JSSCC Dec 2013



Efficient Machines

Are Highly Parallel
Have Deep Storage Hierarchies
Have Heterogeneous Processors
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Target Independent Programming
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Programmers, tools, and architecture
Need to play their positions

Programmer

ArchitectureTools

forall molecule in set { // launch a thread array

forall neighbor in molecule.neighbors { //

forall force in forces { // doubly nested

molecule.force = 

reduce_sum(force(molecule, neighbor))

}

}

}

Map foralls in time and space

Map molecules across memories

Stage data up/down hierarchy

Select mechanisms

Exposed storage hierarchy

Fast comm/sync/thread mechanisms
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Target-

Independent

Source

Mapping 

Tools

Target-

Dependent

Executable

Profiling & 

Visualization
Mapping 

Directives



Legion Programming Model

Separating program logic from machine mapping

Legion

Program

Legion

Runtime
Legion

Mapper

Target-independent specification

Task decomposition

Data description

Compute target-specific mapping

Placement of data

Placement of tasks

Schedule
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The Legion Data Model: Logical Regions

Main idea: logical regions

- Describe data abstractly

- Relational data model

- No implied layout

- No implied placement

Sophisticated partitioning mechanism

- Multiple views onto data

Capture important data properties

- Locality

- Independence/aliasing

SP

p1 pn… s1 sn… g1 gn…

N

Field Space

Index Space

(Unstructured,

1-D, 2-D, N-D)



The Legion Programming Model
Computations expressed as tasks

- Declare logical region usage

- Declare field usage

- Describe privileges:

read-only, read-write, reduce

Tasks specified in sequential order

Legion infers implicit parallelism

Programs are machine-independent

- Tasks decouple computation

- Logical regions decouple 
data

calc_currents(piece[0],          ,          ,         );

calc_currents(piece[1],         ,         ,           );

distribute_charge(piece[0],          ,         ,          );

distribute_charge(piece[1],          ,         ,          );

p0

p1 s1

s0 g0

g1

p0 s0 g0

p1 s1 g1

p1 pn… s1 sn… g1 gn…
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Legion Runtime System

Functionally correct 

application code

Mapping to target 

machine

Extraction of parallelism
Management of

data transfers

Task scheduling and 

Latency hiding
Data-Dependent 

Behavior

Compiler/Runtime

understanding of 

data

Legion Applications 

with Tasks and Logical 

Regions

Legion Mappers for 

specific machines

Legion Runtime

understanding of 

logical regions



Evaluation with a Real App: S3D

Evaluation with a production-grade combustion simulation

Ported more than 100K lines of MPI Fortran to Legion C++

Legion enabled new chemistry: Primary Reference Fuel (PRF) mechanism

Ran on two of the world’s top 10 supercomputers for 1 month

- Titan (#2) and Piz-Daint (#10)



Performance Results: Original S3D

Weak scaling compared to vectorized MPI Fortran version of S3D

Achieved up to 6X speedup

Titan Piz-Daint



Performance Results: OpenACC S3D

1.73X
2.85X

Also compared against experimental MPI+OpenACC version

Achieved 1.73 - 2.85X speedup on Titan

Why? Humans are really bad at scheduling complicated applications
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HPC

Deep
Learning
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HPC <-> Deep Learning

• HPC has enabled Deep Learning

• Concepts developed in the 1980s - GPUs provided needed performance

• Superhuman performance on many tasks – classification, go, …

• Enabling intelligent devices – including cars

• Deep Learning enables HPC

• Extracting meaning from data

• Replacing models with recognition

• HPC and Deep Learning both need more performance – but Moore’s Law is over

• Reduced overhead

• Efficient communication

• Resulting machines are parallel with deep memory hierarchies

• Target-Independent Programming




