

ハンズオンラボ DIGITS による物体検出入門

山崎和博

ディープラーニング ソリューションアーキテクト エヌビディア

AGENDA

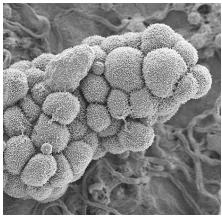
ディープラーニングとは

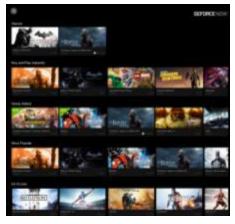
Qwiklabs/DIGITSの使い方

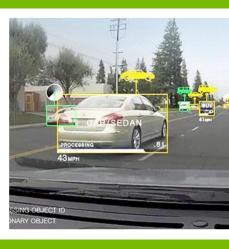
DIGITSによる物体検出入門ハンズオン

ディープラーニングとは

様々な分野でディープラーニングを応用







インターネットとクラウド

画像分類 音声認識 言語翻訳 言語処理 感情分析 推薦 医学と生物学

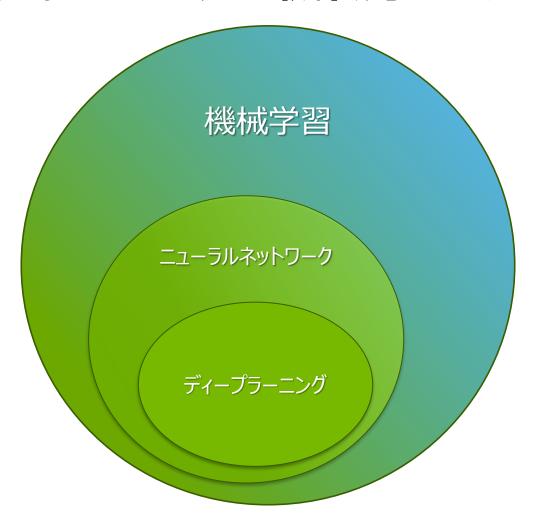
癌細胞の検出 糖尿病のランク付け 創薬 メディアとエンターテイメント

字幕 ビデオ検索 リアルタイム翻訳 セキュリティと防衛

顔検出 ビデオ監視 衛星画像 機械の自動化

歩行者検出 白線のトラッキング 信号機の認識

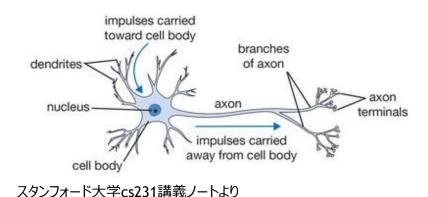
ディープラーニングは機械学習の一分野



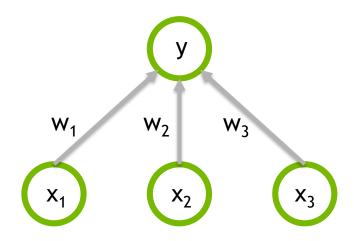
人工ニューロン

神経回路網をモデル化

神経回路網



人工ニューロン(パーセプトロン)

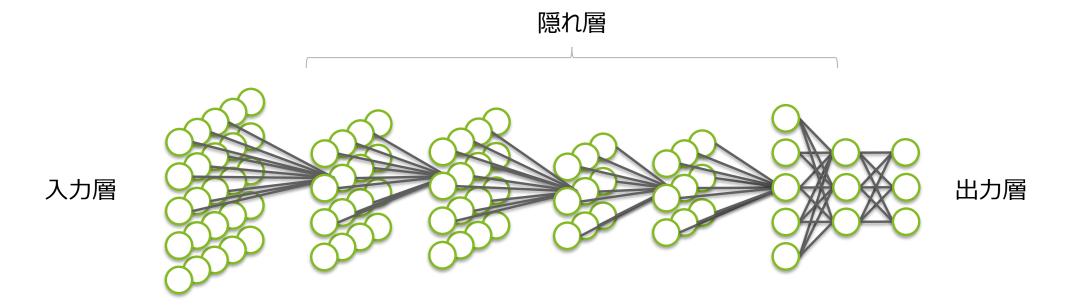


$$y=F(w_1x_1+w_2x_2+w_3x_3)$$

$$F(x)=max(0,x)$$

人工ニューラルネットワーク

トレーニングできる単純な数学的なユニットの集合は、 複雑な機能を学ぶことができる



人工ニューラルネットワークは、十分なトレーニングデータが与えられれば、 生の入力データから出力を決定する、非常に複雑な関数を近似することができる。

ディープラーニングの恩恵

ディープラーニングとニューラルネットワーク

■ ロバスト性

- 特徴量の設計を行う必要がない
- 特徴は、学習用データのバラつきの影響を押さえながら、自動的に学習・獲得される

■ 一般性

- 同じニューラルネットワークのアプローチを、多くの異なるアプリケーションやデータに適用できる
- スケーラブル
 - より多くのデータで大規模並列化を行う事でパフォーマンスが向上する

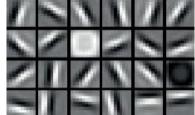
畳込みニューラルネットワーク(CNN)

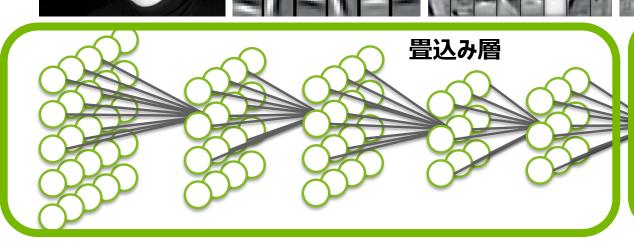
画像認識・画像分類で使われる、高い認識精度を誇るアルゴリズム。畳込み層で画像の特徴を学習

ネットワークアーキテクチャーラーニングアルゴリズム

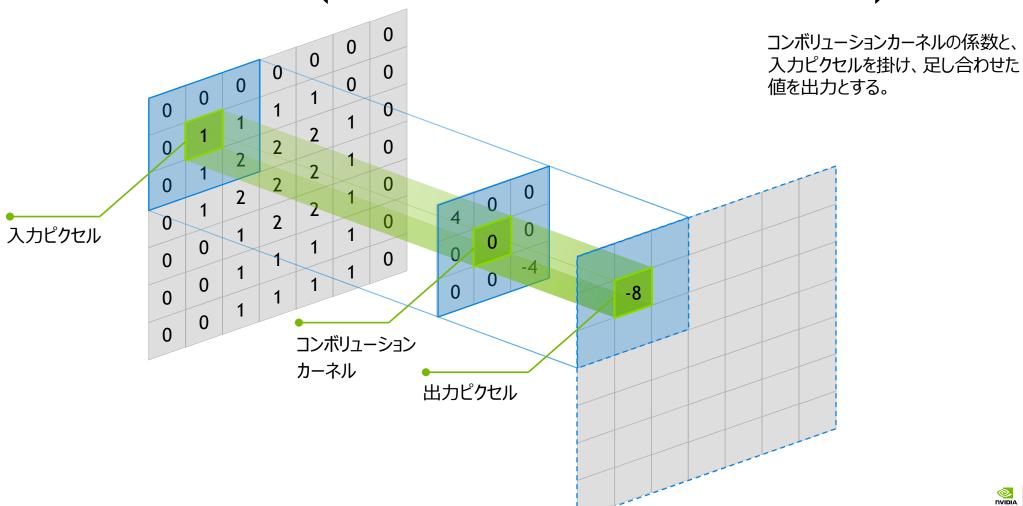
10層 10 億パラメータ

30 エクサフロップスの計算量 GPU を利用して30日





畳込み層(CONVOLUTIONAL LAYER)



ディープラーニングフレームワーク

ディープラーニング フレームワーク

GPUで高速化されたディープラーニング フレームワークが多数存在

ディープラーニング フレームワーク

ディープラーニング フレームワーク

	Caffe	Torch7	Theano	TensorFlow	Chainer
インターフェース	C++/Python/Matlab	Lua/C	Python	C/C++/Python	Python
cuDNN	5	5	5	5	5
ライセンス	BSD-2	BSD	BSD	Apache 2.0	MIT
マルチGPU (1ノード)	0	0		0	0
モデルの柔軟性	\triangle	0	0	\bigcirc	0
CNN	0	0	0	0	0
RNN	<u>#2033</u>	0	\bigcirc	0	0
RBM	×	0	0	0	0
備考	高速 Caffe Model Zoo	多数のアルゴリズムを サポート	自動微分	自動微分 TensorBoard	Define by Run CuPy

CAFFE とは?

オープンソースのディープラーニング フレームワーク

- Berkeley Vision and learning Center (BVLC) において開発
- 多くのコントリビュータにより構成されるオープンソースコミュニティ
- C++/CUDA による実装
 - 高速で十分に検証された実装
 - シームレスな GPU によるアクセラレーション
- コマンドライン、Python, MATLAB インターフェース
- リファレンスモデルやサンプルもある

CAFFE の機能

データのプリプロセスと管理

データフォーマット

LevelDB・LMDB データベース

インメモリ (C++・Python のみ)

HDF5

画像ファイル

プリプロセスツール

生画像から LevelDB/LMDB を作成

トレーニング用と検証用のデータセット作成(シャッフル付き)

平均画像の生成

データ変換

画像のトリミング、リサイズ、 スケーリング、位置反転

平均値を引く

CAFFE の機能

ニューラルネットワークの定義

- ▶ Protobuf モデルフォーマット
 - ネットワーク構造や学習パラメータ の定義に使われる
 - ▶ 様々なフォーマットに対応
 - ▶ Caffeのオートジェネレータで生 成可能
 - ▶構文チェック機能も存在
 - ▶ コーディング不要

```
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
convolution param {
      num output: 20
      kernel size: 5
      stride: 1
      weight filler {
             type: "xavier"
```

CAFFE の機能

ニューラルネットワークの定義

Loss関数:

分類

Softmax

Hinge loss

線形回帰

Euclidean loss

多值分類

Sigmoid cross entropy loss

などなど.....

使用可能なレイヤー種別:

Convolution

Pooling

Normalization

利用可能な関数:

ReLU

Sigmoid

Tanh

などなど.....

NVIDIA DIGITS

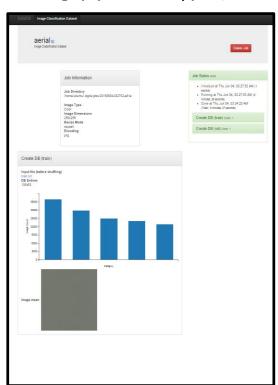
GPUで高速化されたディープラーニング トレーニング システム

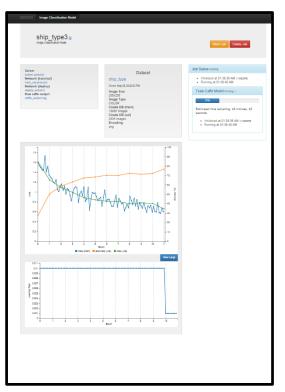
学習データの作成

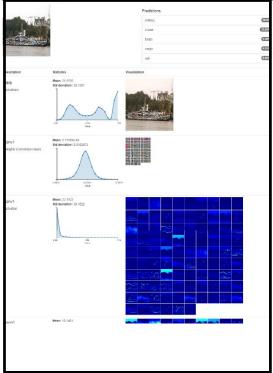
モデルの作成

学習過程の可視化

モデルのテスト







http://developer.nvidia.com/digits

NVIDIA DIGITS

GPUで高速化されたディープラーニング トレーニング システム

クラウド

▶ 手元のPCからWebブラウザでアクセス可能なディープラーニング トレーニング システム

GPUクラスタ

マルチGPU

GPU HW

GPU

- 画像分類と物体検出の為のDNNのデザインと可視化の機能を提供
- NVIDIAが最適化したフレームワークで高速に学習が可能
- ハイパーパラメータのチューニングを強力に サポート
- → 学習のジョブを簡単にスケジューリング、リ アルタイムにaccuracyとlossを監視
- 様々な学習データフォーマット、フレーム ワークに対応

ハンズオンを開始しましょう

ログインからラボの開始まで

- https://nvlabs.qwiklab.comにアクセス
- ログイン (or 新規ユーザ作成)
- クラス "DLI20170522-Japan" を選択
- "エヌビディアDIGITSによる物体検出入門"を選択→ "選択"ボタンを押す
- "ラボを開始"ボタンを押す

わからないことがあったら、会場のアシスタントに聞いてください!

ラボの開始

<u>https://nvlabs.qwiklab.com/</u>にアクセス

[DLI20170522-Japan]->[エヌビディアDIGITSによる物体検出]を選択

ラボの開始

エヌビディアDIGITSによる物体検出入門

DIGITSの使い方: ワークフロー

1. 学習データセットの作成

2. 学習モデルの作成、学習開始

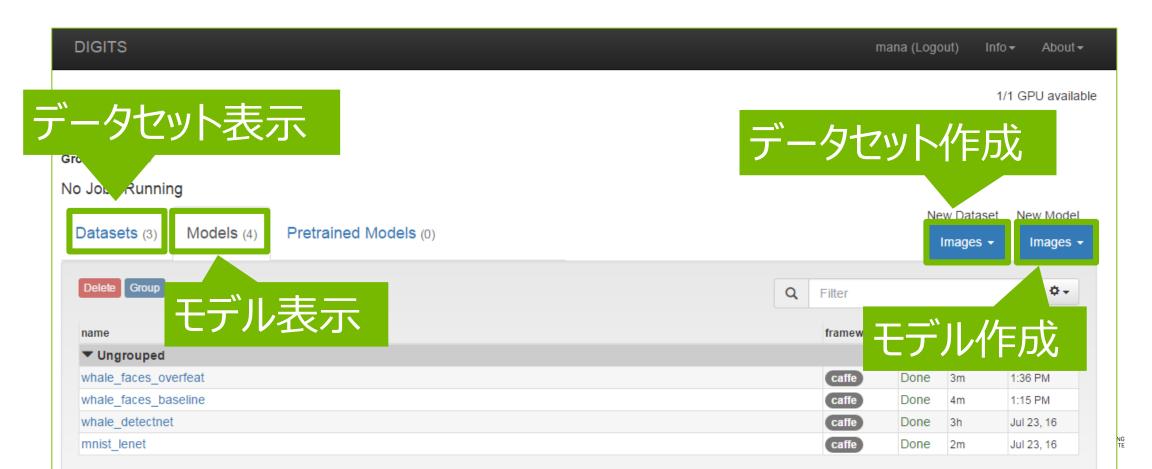
学習

3. 学習済みモデルのテスト

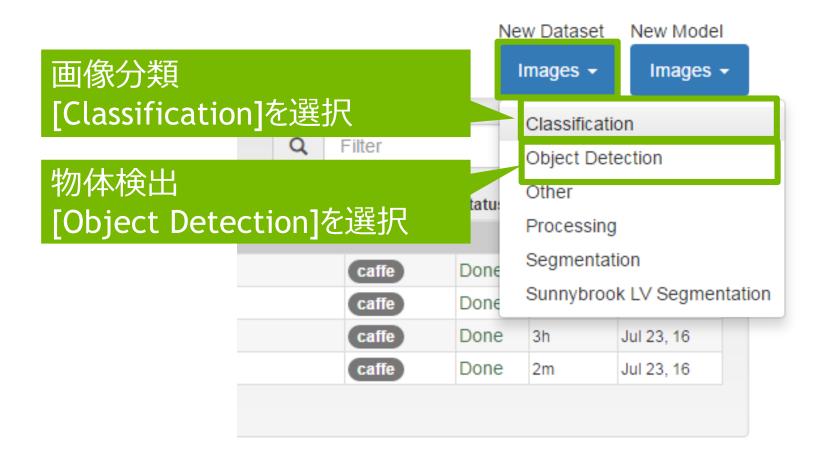
推論 (インファレンス)

DIGITSの使い方: ホーム画面への戻り方

DIGITSの使い方: データセット/モデルの表示



DIGITSの使い方: データセット/モデルの作成



DIGITSの使い方: ネットワーク構造の変更方法

— DIGITSは、Caffeを使って学習を行う事が出来る

DIGITSの使い方: ネットワーク構造の変更方法

Caffeのモデル定義ファイル(prototxt)を書き換える

```
Custom Network @
                    Visualize
       layer {
   31
         name: "conv1"
         type: "Convolution"
  33
         bottom: "data"
                                                  Layer{}で囲まれた部分が一つの層
   34
         top: "conv1"
  35
         param {
   36
         lr mult: 1
   37
          decay mult: 1
   38
   39
         param {
          1r mult: 2
   41
          decay_mult: 0
   42
   43
         convolution param {
          num output: 96
   44
   45
          kernel size: 11
          stride: 4
   46
          weight filler {
   47
            type: "gaussian"
   49
             std: 0.01
   50
   51
           bias filler {
   52
            type: "constant"
   53
             value: 0
   54
```


Jupyter notebook上での処理実行

ラボ開始

ディープラーニングによる物体検出

クジラの顔を検出する

▶ データセット

Right Whale Recognition

https://www.kaggle.com/c/noaaright-whale-recognition

物体検出の手法

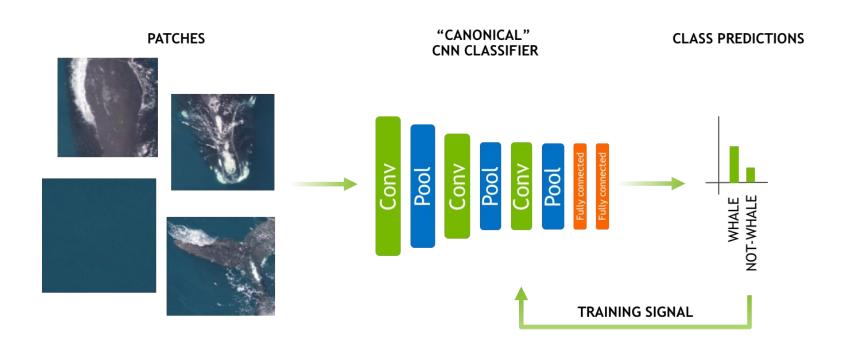
本ラボでそれぞれ説明します

- スライディング ウィンドウ
 画像全域をスキャンして検出
- 候補の生成と分類
 検出対象となる領域の候補を生成し、検出
- 3. 全畳み込みネットワーク (FCN) 畳み込みネットワークのみを用いて検出
- 4. DetectNet 回帰を併用し、物体を囲む矩形領域を推定

1. スライディング ウィンドウ

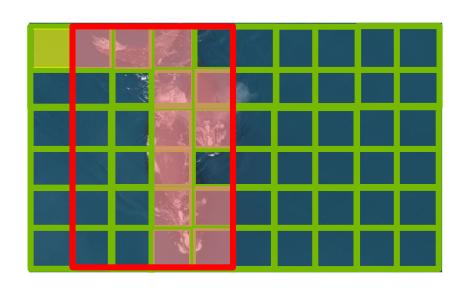
学習

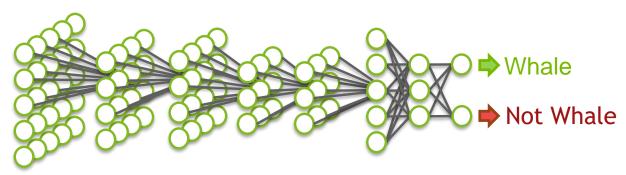
ディープニューラルネットワークに「鯨」か「非鯨」の判別を学習させる



検出

画像を分割、それぞれのパッチ(領域)に対して検出を試みる





ハンズオン

- 1. DIGITSを起動
- 「鯨」「非鯨」を判別するニューラルネットワークを作成
 [New Dataset / Images]->[Classification]からデータセットを作成
 [New Model / Images]->[Classification]からモデルを作成し、学習
- 3. 学習後のモデルを用いて推論処理を行う

DIGITSを開く

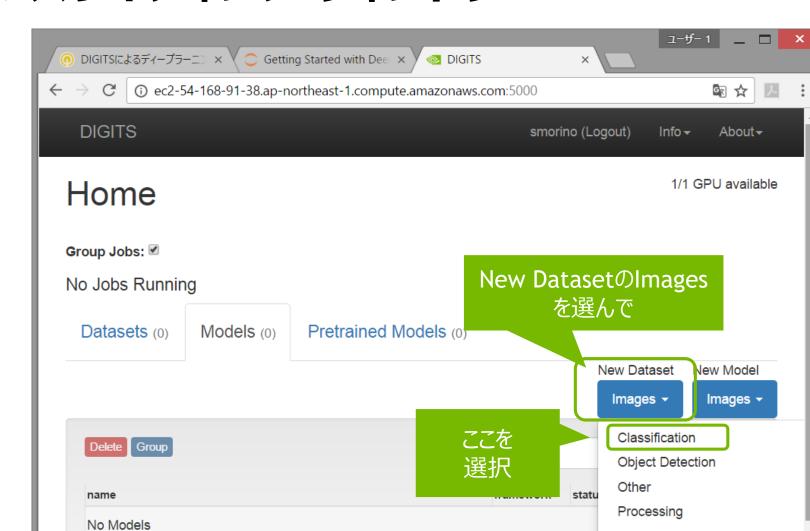
1. ~

Imagesから

"Classification"を選択

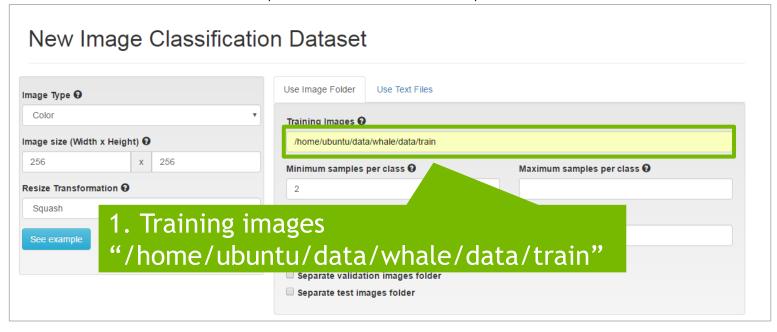
1

初回だけログインを求められるので何か入力 (小文字でお願いします)



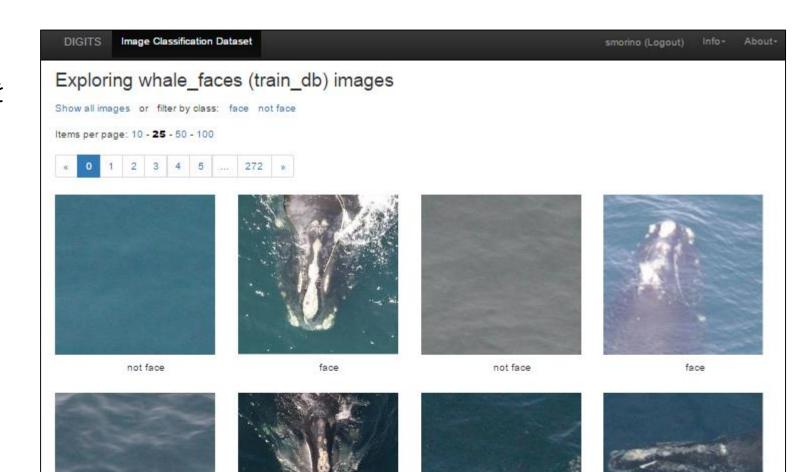
データセット作成

- 1. DIGITSを開く
- 2. [New Dataset / Images] -> [Classification]を選択する
- 3. 以下を入力 (2 ~ 3分かかります)



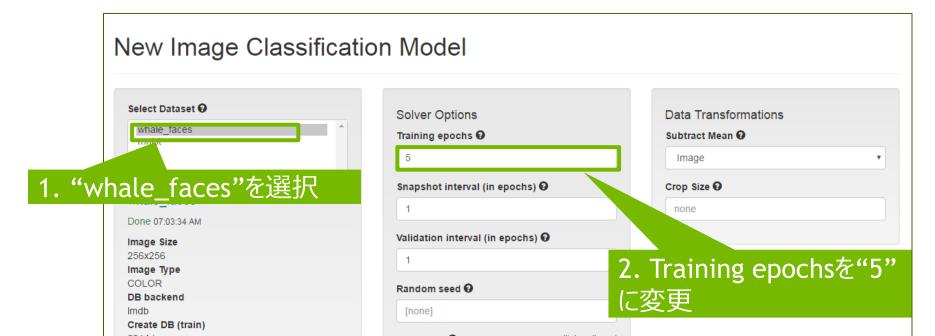
学習データを見てみる

データセットの作成完了後、 "Explorer the db"ボタンを 押すと右の画面

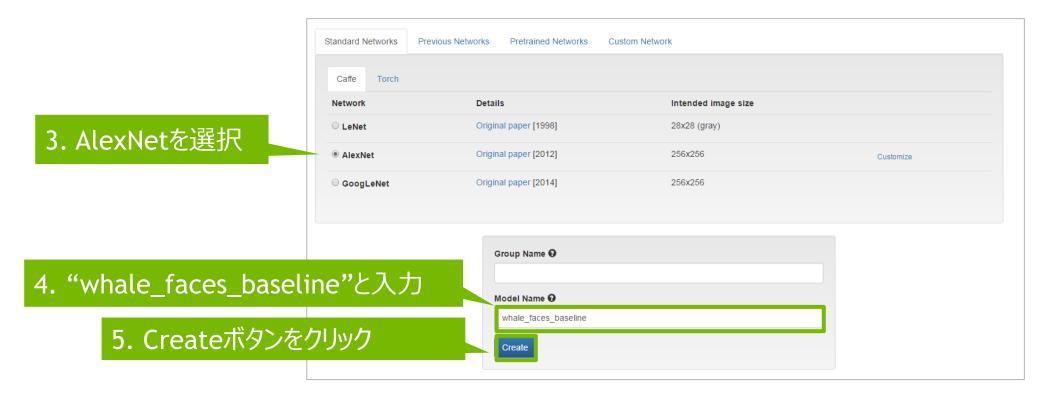


モデルの作成、学習

- 1. DIGITSのホーム画面に移動
- 2. [New Model / Images] -> [Classification]を選択



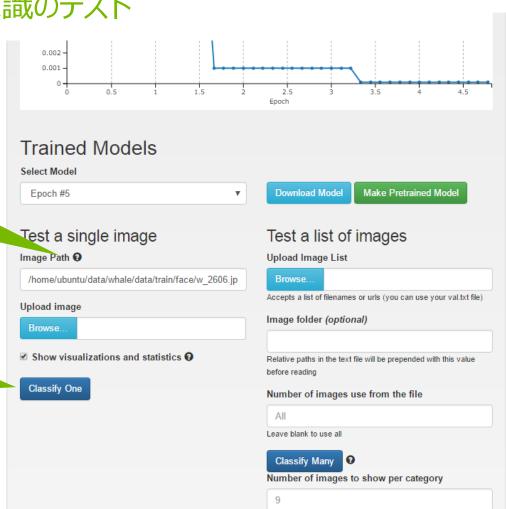
モデルの作成、学習



1画像を用いた認識のテスト

1. Image Path を入力 /home/ubuntu/data/whale/data/train/face/w_2606.jpg

2. [Classify One]ボタンを押す



ジョブIDの確認

学習が終わったら、ジョブIDを控える

DIGITS Image Classification Model

whale_faces_baseline@

Owner: smorino

モデルのジョブID

Job Directory

/home/ubuntu/digits/digits/jobs/2017041

6-081849-e436

Disk Size

0 B

Network (train/val)

train_val.prototxt

Network (deploy)

deploy prototxt

Dataset

whale_faces

Done 08:13:56 AM

Image Size 256x256

Image Type

COLOR

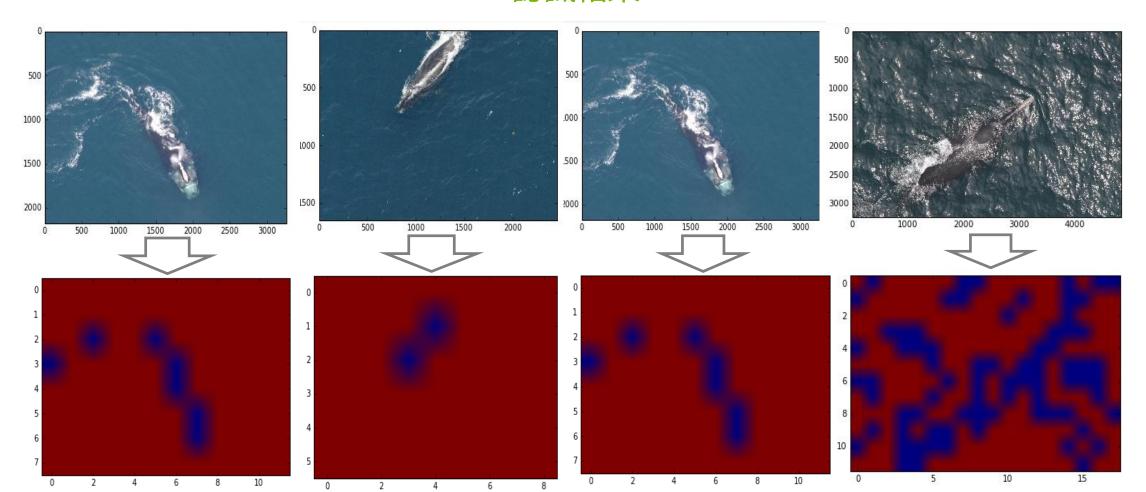
·

推論

Jupyter notebookに戻り、先ほど学習したモデルを用いて推論(インファレンス)処理を行う

```
In [3]: %matplotlib inline
        import numpy as np
        import mumpy as no import matplotlib.pyplot as p 先ほど作成した、モデルのジョブIDに変更
        import caffe
        import time
        JOB NUM = '20170416-081849-e436'
                                        ## Remember to set this to be the job number for your model
        MODEL_FILE = '/home/ubuntu/digits/digits/jobs/' + JOB_NUM + '/deploy.prototxt'
                                                                                      # Do not change
        PRETRAINED = '/home/ubuntu/digits/digits/jobs/' + JOB NUM + '/snapshot iter 270.caffemodel'
                                                                                                   # Do not change
        # Choose a random image to test against
        RANDOM IMAGE = str(np.random.randint(10))
        IMAGE FILE = 'data/samples/w ' + RANDOM IMAGE + '.jpg'
        # Tell Caffe to use the GPU
        caffe.set mode gpu()
        # Initialize the Caffe model using the model trained in DIGITS
        net = caffe.Classifier(MODEL_FILE, PRETRAINED,
                              channel swap=(2,1,0),
                              raw scale=255,
```


認識結果



まとめ

高精度な、クジラの顔画像分類器が作成された。

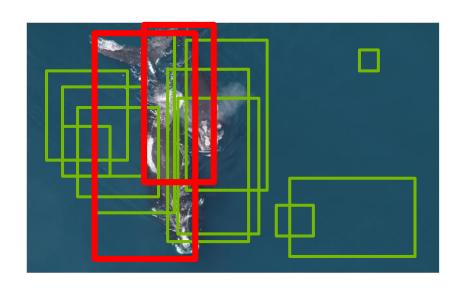
認識精度約98%

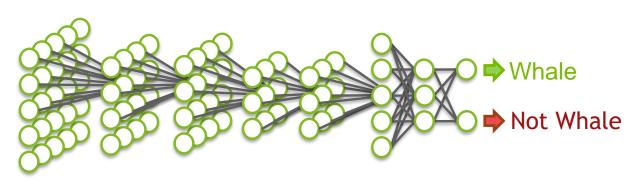
処理時間約10秒

2. 候補の生成と分類

考え方

顔に対応する領域候補を生成 ニューラルネットワーク(CNN)で検出を行う





注. ハンズオンは行いません

2. 候補の生成と分類

特性

利点

対象となる候補領域数の削減による高速化

候補生成アルゴリズム次第で、物体の位置特定精度を向上可能

欠点

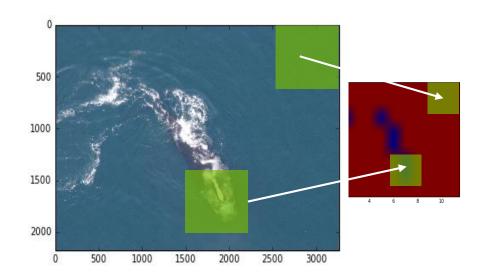
より複雑な多段処理パイプライン

候補を生成するための追加モデルの構築や学習

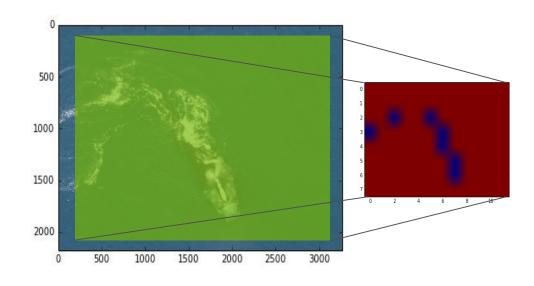
誤検出率は低くない

生成される候補の数によって推論時間が変わる

考え方



スライディング ウインドウ 一つの領域で、一個の判定結果



FCN 一つの領域から、ヒートマップとして 判定結果を出力

ハンズオン

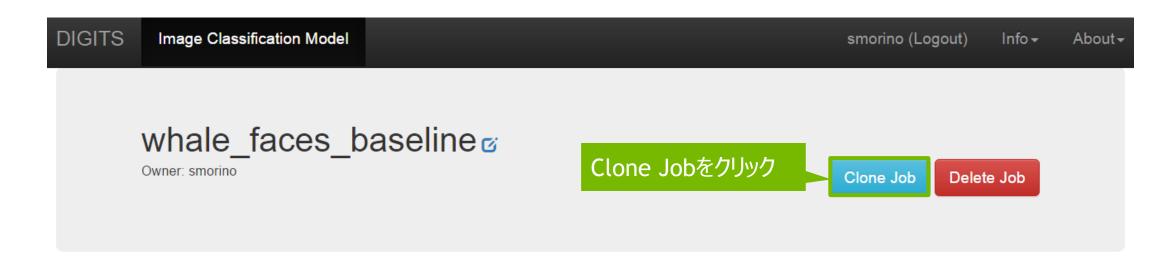
- 1. 検出方法1で作成した「鯨」と「非鯨」を分類するモデルを再利用 [Clone Job]でモデルを複製
- 全畳み込みネットワークに書き換える
 ネットワーク定義を書きかえる (fc6 fc8まで)
 再度、学習を行う
- 3. 学習後のモデルを用いて推論処理を行う

モデル作成

- DIGITSのホーム画面に戻る
- 2. [Models]を選択
- "whale_faces_baseline"をクリック (先ほど作成したモデルに移動)

ハンズオン

1. [Clone Job]でモデルを複製



Job Directory

/home/ubuntu/digits/digits/jobs/2017041 6-063529-0d17 Dataset

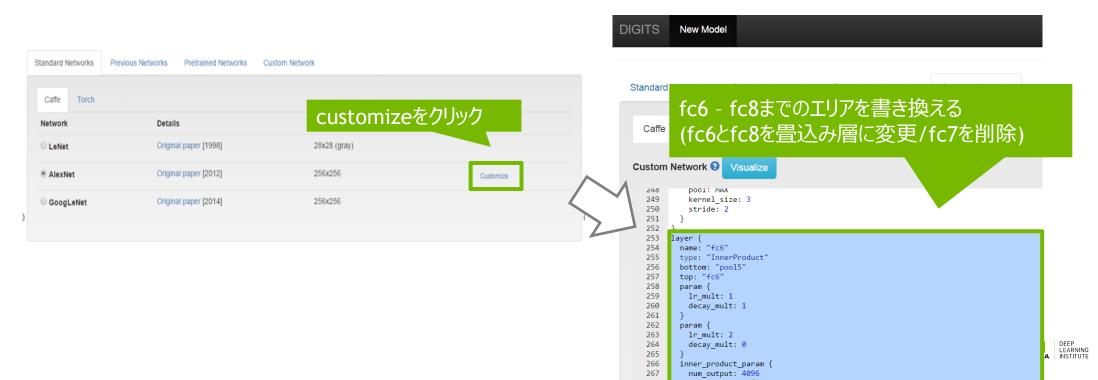
whale faces

Job Status Done

• Initialized at 06:35:29 AM (1 second)

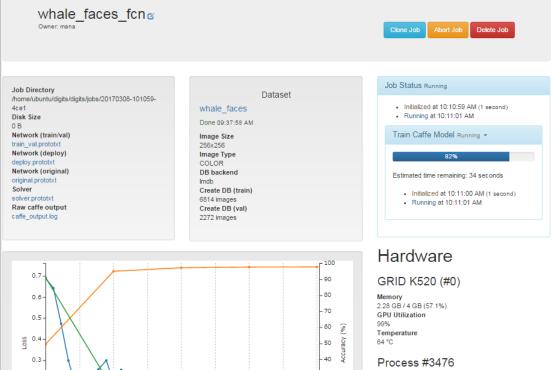
ネットワーク定義の書き換え

- 1. [Standard Networks]->[(AlexNet横の)customize]をクリック
- 2. テキストボックス内部のネットワーク定義を書き換える



学習の開始

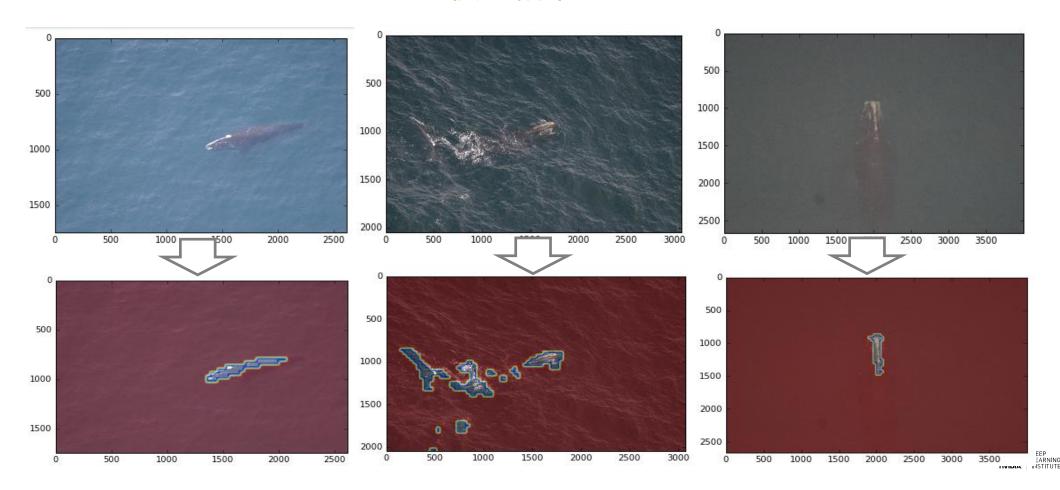
[Model Name]を"whale_faces_fcn"として、[Create]ボタンをクリック



推論

1. 学習が終わったら、ジョブIDを控える

検出結果



まとめ

処理時間

スライディングウインドウ : 約10 秒

全畳み込みネットワーク:約1.5秒

(画像の大きさに応じ、1.5 ~ 6秒程度)

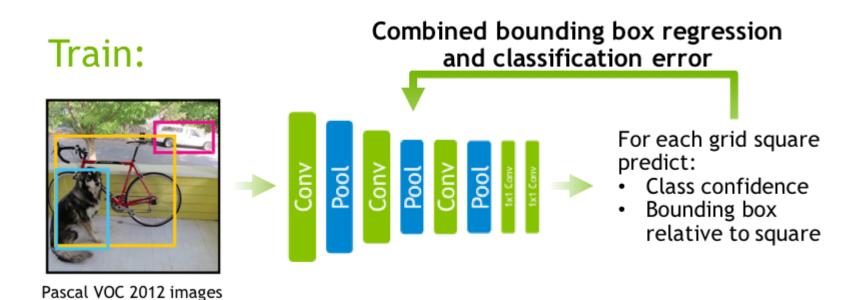
性質

多くの場合、FCNの方が高精度、より多くのクジラを発見。

砕ける波や海面に反射する日光により混乱することもあるが、 適切なデータ拡大を使用することにより、誤検出を軽減。

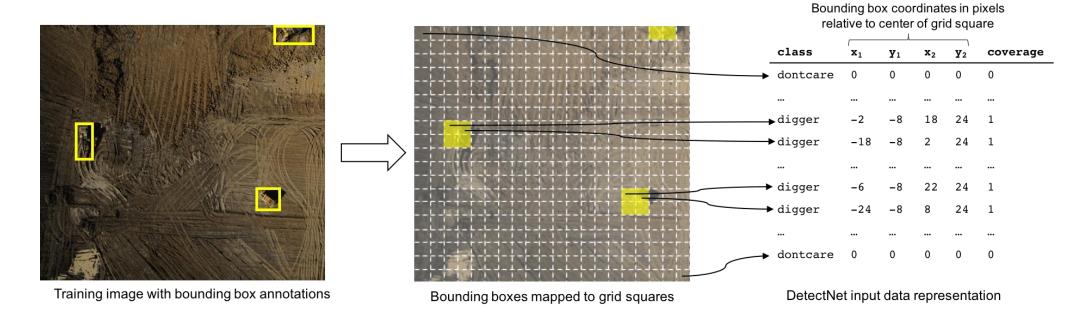
考え方: 学習時

- 1. 画像をグリッドに分割
- 2. グリッド単位でバウンディングボックス・信頼度を予測できるよう、ネットワークに学習させる

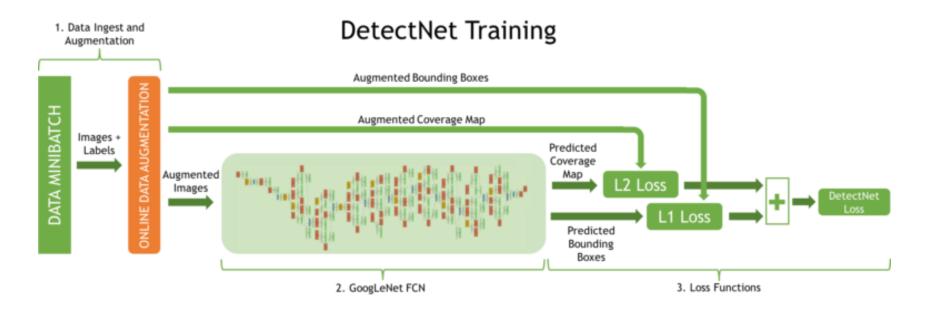


考え方: 学習時

学習用データの考え方



考え方: ネットワーク、文献

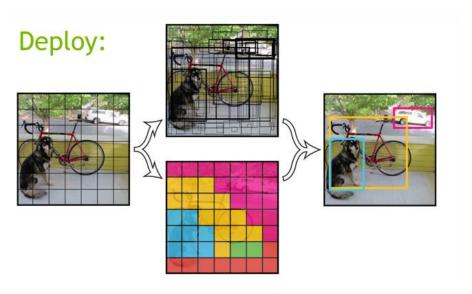


DetectNet: Deep Neural Network for Object Detection in DIGITS

https://devblogs.nvidia.com/parallelforall/detectnet-deep-neural-network-object-detection-digits/

考え方: 推論

- 1. 画像をグリッドに分割
- 2. グリッドごとに、バウンディングボックス・占有度(Coverage)を推論
- 3. バウンディングボックスをクラスタリング
- 4. 精度(mAP)を算出



ハンズオン

- 1. DIGITSでDetectNetを使った鯨の位置検出を行うモデルを作成する
 - [New Datasets / Images]->[Object Detection]から、"whales_detectnet"という名前でデータセットを作成する
 - 事前に準備されている"whale_detectnet"を選択し、 [Clone Job]でモデルを複製
 - 設定を行い、再学習
- 2. DIGITSのテスト機能を使い、学習済みのモデルのテストを行う

データセット作成

- 1. [Datasets]->[Object Detection]を選択
- 2. 以下を入力
- 1. Training image folder
- "/home/ubuntu/data/whale/data_336x224/train/images"
- 2. Training label folder
- "/home/ubuntu/data/whale/data_336x224/train/labels"
- 3. Validation image folder
- "/home/ubuntu/data/whale/data_336x224/val/images"
- 4. Validation label folder
- "/home/ubuntu/data/whale/data_336x224/val/labels"
- **5. Pad Image** 値が入っている場合、削除し、空にする

Object Detection Dataset Options Images can be stored in any of the supported file formats ('.png'\.ipeg'\.ipeg'\.ipmp'\.ppm').

Training image folder 2

/home/ubuntu/data/whale/data_336x224/train/images

Label files are expected to have the .txt extension. For example if an image file is named foo.png the corresponding label file should be foo.txt.

Training label folder ?

/home/ubuntu/data/whale/data_336x224/train/labels

Validation image folder 2

/home/ubuntu/data/whale/data 336x224/val/images

Validation label folder @

/home/ubuntu/data/whale/data 336x224/val/labels

Pad image (Width x Height) 9

width

height

Resize image (Width x Height) 9

データセット作成

1. "whales_detectnet"という名前で、データセットを作成する

	Enforce same shape ②
	Yes ▼
	Group Name
	Dataset Name
1. "whales_detectnet"を入力	whales_detectnet
2."Create"ボタンをクリック	Create

作成済みのモデルを使う

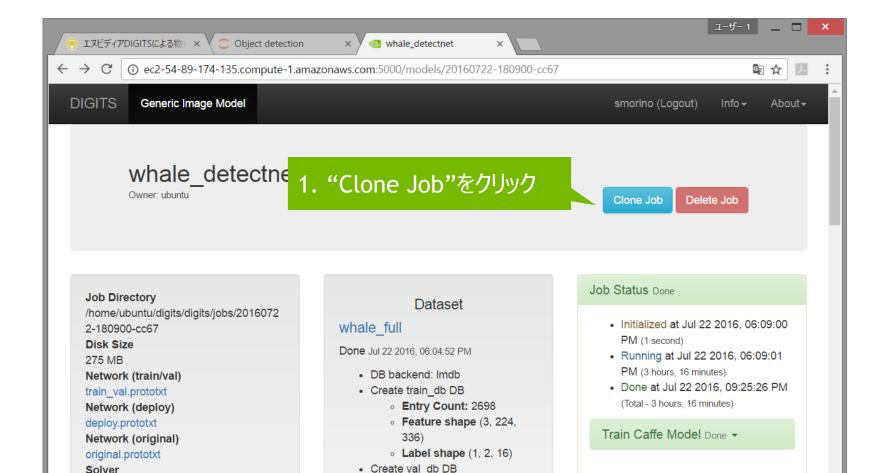
- DIGITSのHome画面に戻る
- 2. "Models"を選択
- 3. "whale_detectnet"をクリック

DIGITS 1. Home画面に戻る Home Group Jobs:

✓ 2. "Models"を選択 No Jobs Running Models (4) Pretrained Models (0) Datasets (4) Group Delete Filter name frame **▼** Ungrouped whale faces fcn whale_faces_baseline whale detectnet mnist_lenet

3. "whale_detectnet"をクリック

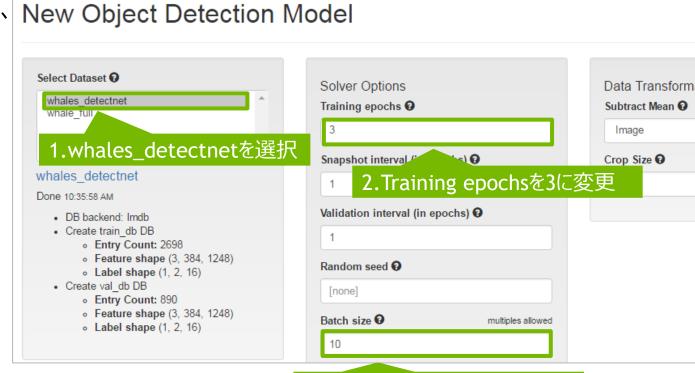
作成済みのモデルを使う



学習: 3 epochのみ

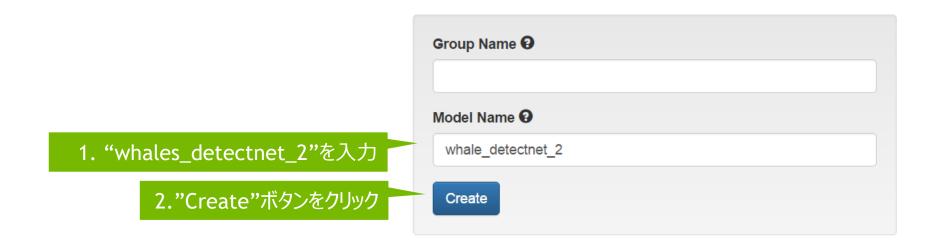
- "whale_detectnet"を選択後、
 [Clone Job]でモデルを複製
- 2. 右の設定を行う

時間の都合で3 epochだけ、 学習します (8分ほどかかります)

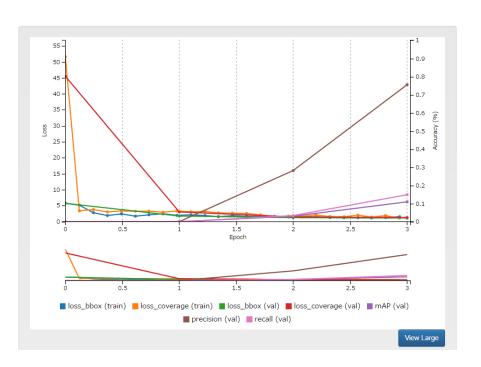


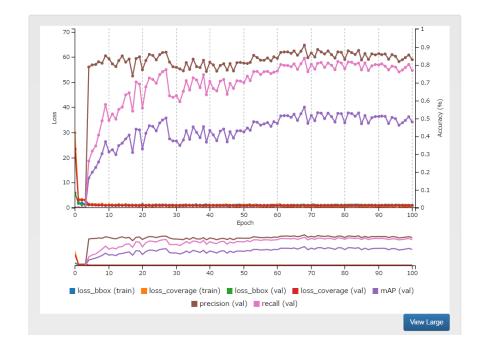
学習: 3 epochのみ

- 1. モデル名を"whales_detectnet_2"とする
- 2. "Create"ボタンをクリックして、学習を開始する



学習: 3 epoch \sim 100 epoch





3 epochまで

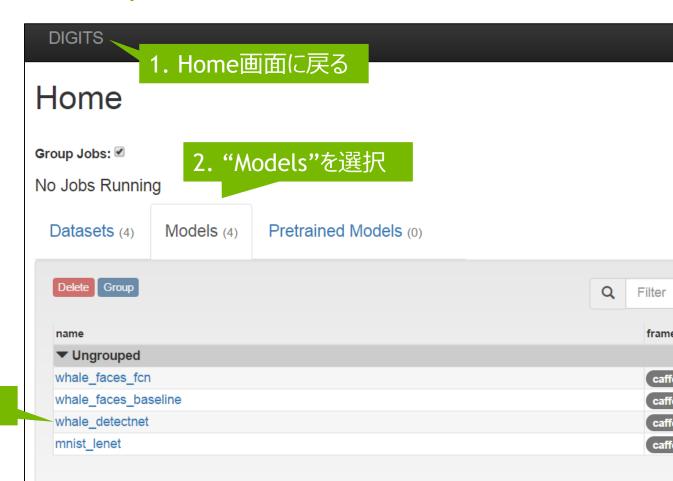
100 epoch

推論: 100 epoch版

- 1. DIGITSのHome画面に戻る
- 2. "Models"を選択
- 3. "whale_detectnet"をクリック

whale_detectnetは、100 epoch 完了時の学習結果

3. "whale_detectnet"をクリック



推論: 100 epoch版

DIGITSのテスト機能を使い、学習済みの Select Visualization Method Visualization モデルをテストする Draw a bounding box arou 1.Bounding boxesを選択 Bounding boxes values are lists of bounding [[I, t, r, b, confidence], ...], ... Inference Options Do not resize input image(s) Test a single image Test a list of in Image Path 0 Upload Image List 2.Image Path /home/ubuntu/data/whale/data 336x224/val/imag-

Upload image

Test One

Show visualizations and statistics @

Accepts a list of filenames

Image folder (optiona

Relative paths in the text fi

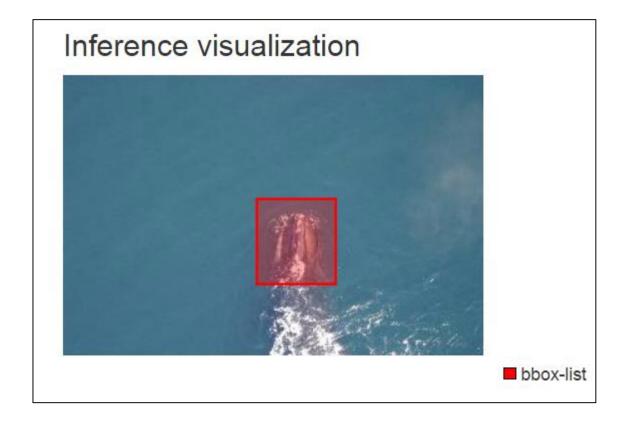
Number of images us

before reading

3. "Test One"ボタンをクリック

"/home/ubuntu/data/whale/data_336x224/val/images/000000118.png"

まとめ



ほとんどのクジラの顔を 正確に検出

誤検出率が非常に低い

336x224ピクセル画像の 平均処理時間 "22ミリ秒"

