ACCELERATING SMART CITIES WITH GPU INFRASTRUCTURE

Dr. Leo K. Tam

TEN YEARS OF GPU COMPUTING

HARDWARE AND DATA DRIVES DEEP LEARNING

You Tube

facebook

"Volvo XC90"

6 💿 NVIDIA

MOST PERVASIVE HPC PLATFORM EVER BUILT

ALPHAGO

Training DNNs: 3 weeks, 340 million training steps on 50 GPUs

Play: Asynchronous multi-threaded search

Simulations on CPUs, policy and value DNNs in parallel on GPUs

Single machine: 40 search threads, 48 CPUs, and 8 GPUs

Distributed version: 40 search threads, 1202 CPUs and 176 GPUs

Outcome: Beat World Go champion in best of 5 matches

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html http://deepmind.com/alpha-go.html

TESLA BUILT FOR THE DATA CENTER

END-TO-END DESIGN FOR SYSTEM UPTIME

DATA CENTER QUALIFIED BY SERVER OEMS

SCALE-OUT PERFORMANCE IN THE DATA CENTER

NVLINK DELIVERS SCALABLE PERFORMANCE

DATA CENTER GPU MANAGEMENT

Enterprise-Grade Management Tool for Operating the Data Center

SCALING NEURAL NETWORKS

Data Parallelism

Notes:

- Need to sync model across machines
- Requires P-fold larger batch size
- Works across many nodes parameter server approach linear speedup

Adam Coates, Brody Huval, Tao Wang, David J. Wu, and Andrew Ng

16 NIDIA

SCALING NEURAL NETWORKS

Model Parallelism

Notes:

Allows for larger models than fit on one GPU

- Most commonly used within a node GPU P2P
- Effective for the fully connected layers
- Requires much more frequent communication between GPUs

Adam Coates, Brody Huval, Tao Wang, David J. Wu, and Andrew Ng

17 💿 NVIDIA

PARTNER RESULTS - BAIDU

Near linear scaling - synchronous training

GPU number

Ren Wu et al, Baidu, "Deep Image: Scaling up Image Recognition." arXiv 2015 Dario Amodei, et. al. Baidu, "Deep Speech 2" arXiv 2015

18 💿 NVIDIA

PARTNER RESULTS - DGX-1 TENSORFLOW

Training: NVIDIA® DGX-1™ synthetic data (1,2,4, and 8 GPUs)

https://www.tensorflow.org/performance/benchmarks#methodology

19 💿 nvidia

NVIDIA METROPOLIS PARTNERS

AllGoVision	A BETTER TOMORROW	BriefCam The Video Sympasis Company
[herta]	🕞 iCetana	Motion DSP
OMNI Aî	OpenALPR	SENSETIME
	PROFESSIONAL VIDEO SURVEILLANCE AND AUDIO RECORDING SYSTEMS	XJERA LABS

ADVANCED MODELS MAY ERODE PRIVACY The Target Dilemma

- Using a basket of 25 product features, Target generated classification score
- This resulted in empathetically recommending baby-related promotions

 In the literature, Youyou et. al. worked with Facebook likes

Duhigg 2016, New York Times

THE ROLE OF PUBLIC INFRASTRUCTURE

US to Build Two Flagship Supercomputers

Major Step Forward on the Path to Exascale

InsideHPC

SF OpenData

About Data – Developers Showcase Help –

SF OpenData Showcase

Welcome to the SF OpenData Showcase. Visit this page to see featured apps. In the future, we'll include reports, stories and feature other uses of the City's data. For now, explore the different apps by category and visit our complete apps showcase.

Q search SF OpenData

TESLA V100

21B transistors 815 mm²

80 SM 5120 CUDA Cores 640 Tensor Cores

16 GB HBM2 900 GB/s HBM2 300 GB/s NVLink

*full GV100 chip contains 84 SMs

ROAD TO EXASCALE

Volta to Fuel Most Powerful US Supercomputers

System Config Info: 2X Xeon E5-2690 v4, 2.6GHz, w/ 1X Tesla P100 or V100. V100 measured on pre-production hardware.

