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Motivation: Nicotine metabolizing enzymes and regulators
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CYP2A6 transcription is regulated by CAR, NRF2, and HNF4A; CYP2A6 activity is regulated by POR and oxidation state.

POR is a 
oxido- 
reductase 
which binds 
P450 CYPs, 
oxygen and 
NADPH and 
regulates 
oxidation 
state.

CAR is  
constitutively 
active and 
further 
activated by 
steroids and 
xenobiotics. 

NRF2 is 
activated by 
oxidation 
state. 

Coding: 
CAR by NR1I3, 
NRF2 by NFE2L2, 
HNF4A by HNF4A, 
and POR by POR. 

HNF4A is 
activated 
by linoleic 
acid.

Figure: PharmGKB nicotine metabolism pathway with added annotations
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Predicted molecular phenotypes from genotypes
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Predicting Molecular Phenotypes: Benefits

Define biosignatures
Genomic data availability
Measuring molecular phenotypes may not be practical
Assess many predicted molecular phenotypes (e.g. TWAS; see Gusev et al.
2016)
Path for biomarker development (id subgroups at risk, select optimal
treatments)
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NMR model: Generalized Linear Model

The conditional mean of Yi, the NMR of individual i, depends on P explanatory
variables through the link function g(·):

g(µi) = β0 +

P1∑
j=1

β1jCij +

P2∑
j=1

β2jGij +

P3∑
j=1

β3jZij ,

Notation:
Cij clinical factors
Gij genetic variants
Zij derived variables
βkj regression coefficients

James Baurley Predicting molecular phenotypes 5 / 22



Application: Genotypes → nicotine metabolism → smoking cessation

Nicotine metabolism influences:

development of dependence (Cannon, 2016; Chenoweth, 2016)
efficacy of treatment (Chen, 2014; Lerman, 2015)

Nicotine metabolism is influenced by:

genetics (h2 = 0.74 (Swan, 2009; Loukola, 2015))
ancestry (Wang, 2015)
age, sex, BMI, alcohol and cigarette consumption (Chenoweth, 2014)

Data: Laboratory studies of nicotine metabolism (Baurley, 2016)

fixed dose nicotine administered, metabolites measured over time
n = 49 African Americans, n = 51 Asian Americans, n = 212 European
Americans
genotyped DNA samples on the Smokescreen Genotyping Array
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Nicotine Metabolism GWAS (Baurley, et al. 2016)
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Joint Modeling

NMR Application: N = 312, P = 5.9 million
Given complex patterns of associations and P >> N , how do we get a
prediction model?
Reduce search space

used literature and ontologies to select 11 genomic regions (3,752 SNPs) coding
for nicotine metabolic enzymes and transcription factors

Reduce model complexity
1 Machine learning (Penalized regression)
2 Bayesian learning (ALPS)
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A note on prediction error (Hastie, et al. 2009.)

Assume Y = f(X) + ε, ε ∼ N(0, σε)

We estimate the model f̂(X) of f(X).
The prediction error at x: Err(x) = E[(Y − f̂(x))2]

Expand: Err(x) = (E[f̂ − f)2 + E[(f̂ − E[f̂ ])2] + σ2ε

Fortmann-Roe 2012
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Approach 1: Machine learning: Penalized regression

Minimize a penalized residual sum of squares:

β̂ = argmin
β


N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

|βj |q
 (1)

λ controls model complexity
q = 0 is variable subset selection
q = 1 is the lasso (variable selection)
q = 2 is ridge regression (shrinkage)

Elastic net replaces the penalty term with

λ

p∑
j=1

αβ2j + (1− α)|βj |) (2)
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Nicotine Metabolism Biosignature
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Question: Which model should we use for prediction?

James Baurley Predicting molecular phenotypes 12 / 22



Answer: All of them
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chr19q13.2 Gene Region Marginal Results
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Ensemble Selected SNPs, chr19q13.2
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Approach 2: Bayesian Learning

Model diversity can improve prediction performance
Bayesian approaches

account for uncertainty in model form and parameters
allows inclusion of existing evidence into the model

The posterior probability (weight) of a model given data is given by

p(M |D) =
p(D|M)p(M)∑
m∈M p(D|m)p(m)

The marginal likelihood is actually marginalizing over the parameters in the
model.

p(D|M) =

∫
β
p(D|β,M)p(β)dβ

Explore model space by Markov Chain Monte Carlo (MCMC) and
approximate the marginal likelihood.
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Constraining the model space using trees

ALPS considers sets of SNPs whose effects are combined based on tree
structures Λ. See Baurley 2010, 2013.
The output of each node of the tree is a derived variable
θ’s can represent logical ops. E.g., ADD, AND, OR’s

G1	 G2	

Z1	

G3	 G4	

Z2	

Z3	

Y	

Z1 =   (θ1,1G1)+  (θ1,2G2 )+ (1−θ1,1 −θ1,2 )G1G2

Z2 =   (θ2,1G3)+  (θ2,2G4 )+ (1−θ2,1 −θ2,2 )G3G4

θ1,1		 θ1,2		 θ2,1	 θ2,2	

Z3 =   (θ3,1Z1)+  (θ3,2Z2 )+ (1−θ3,1 −θ3,2 )Z1Z2
θ3,2	θ3,1	

β0 

β1 
Y = β0 +β1Z3
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Model search

James Baurley Predicting molecular phenotypes 18 / 22



Nicotine metabolism: Pairwise SNP effects

Visited >6M Λ’s from the 11 genomic regions of interest.
Computed Bayes Factors, ratio of posterior to prior odds

NFE2L2
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Nicotine Metabolism: Top ALPS Pathway Trees
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Conclusions

Genotypes→1 Molecular Phenotype→2 Outcome

Approach not limited to genomics (e.g., phenotype panels, IoT)
Model diversity can boost prediction performances: Ensemble methods,
posterior predictive distribution
Deep learning algorithms can discover new derived variables (e.g. control
elements for gene expression)
Refactoring is needed to GPU accelerate many statistical learning algorithms
Invitation: Learn what’s under the hood!

Offering 1-Week Short Course
May 2018 at BINUS AI R&D Center (Jakarta, Indonesia)
Contact Dr. Bens Pardamean: bpardamean@binus.edu
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