CNTK—Microsoft’s Open Source Deep Learning Toolkit

Taifeng Wang
Lead Researcher, Microsoft Research Asia
2016 GTC China
Deep learning in Microsoft

- Cognitive Services
 - https://how-old.net
 - http://www.captionbot.ai
- Skype Translator
- Bing
 - Cortana
 - ads
 - relevance
 - multimedia
 - ...
- HoloLens
- Microsoft Research
 - speech, image, text
CNTK - Computational Network Toolkit

• CNTK is Microsoft’s open-source, cross-platform toolkit for learning and evaluating deep neural networks.

• CNTK expresses (nearly) arbitrary neural networks by composing simple building blocks into complex computational networks, supporting relevant network types and applications.

• CNTK is production-ready: State-of-the-art accuracy, efficient, and scales to multi-GPU/multi-server.
CNTK is Microsoft’s open-source, cross-platform toolkit for learning and evaluating deep neural networks.

• open-source model inside and outside the company
 • created by Microsoft Speech researchers (Dong Yu et al.) 4 years ago;
 open-sourced (CodePlex) in early 2015
 • on GitHub since Jan 2016 under permissive license
 • nearly all development is out in the open

• growing use by Microsoft product groups
 • all have full-time employees on CNTK that actively contribute
 • CNTK trained models are already being tested in production, receiving real traffic

• external contributions e.g. from MIT and Stanford

• Linux, Windows, .Net, docker, cudnn5
 • Python, C++, and C# APIs coming soon
CNTK is production-ready: State-of-the-art accuracy, efficient, and scales to multi-GPU/multi-server.

Speed comparison (samples/second), higher = better

[note: December 2015]

Achieved with 1-bit gradient quantization algorithm

Theano only supports 1 GPU

1 GPU 1 x 4 GPUs 2 x 4 GPUs (8 GPUs)
CNTK expresses (nearly) arbitrary neural networks by composing simple building blocks into complex computational networks, supporting relevant network types and applications.

example: 2-hidden layer feed-forward NN

\[h_1 = \sigma(W_1 x + b_1) \]
\[h_2 = \sigma(W_2 h_1 + b_2) \]
\[P = \text{softmax}(W_{\text{out}} h_2 + b_{\text{out}}) \]

with input \(x \in \mathbb{R}^M \) and one-hot label \(y \in \mathbb{R}^J \)

and cross-entropy training criterion

\[c e = y^T \log P \]
\[\sum_{\text{corpus}} c e = \max \]

\[h_1 = \text{Sigmoid} (W_1 \ast x + b_1) \]
\[h_2 = \text{Sigmoid} (W_2 \ast h_1 + b_2) \]
\[P = \text{Softmax} (W_{\text{out}} \ast h_2 + b_{\text{out}}) \]

\[c e = \text{CrossEntropy} (y, P) \]
CNTK expresses (nearly) arbitrary neural networks by composing simple building blocks into complex computational networks, supporting relevant network types and applications.

\[
\begin{align*}
 h_1 &= \text{Sigmoid}(W_1 \cdot x + b_1) \\
 h_2 &= \text{Sigmoid}(W_2 \cdot h_1 + b_2) \\
 P &= \text{Softmax}(W_{\text{out}} \cdot h_2 + b_{\text{out}}) \\
 ce &= \text{CrossEntropy}(y, P)
\end{align*}
\]
CNTK expresses (nearly) arbitrary neural networks by composing simple building blocks into complex computational networks, supporting relevant network types and applications.

- **nodes**: functions (primitives)
 - can be composed into reusable composites

- **edges**: values
 - arbitrary-rank tensors with static and dynamic axes
 - automatic dimension inference
 - sparse-matrix support for inputs and labels

- **automatic differentiation**
 - $\frac{\partial F}{\partial \text{in}} = \frac{\partial F}{\partial \text{out}} \cdot \frac{\partial \text{out}}{\partial \text{in}}$

- **deferred computation** → execution engine
 - optimized execution
 - memory sharing

- **editable**
CNTK expresses (nearly) arbitrary neural networks by composing simple building blocks into complex computational networks, supporting relevant network types and applications.

- Lego-like composability allows CNTK to support a wide range of networks, e.g.
 - feed-forward DNN
 - RNN, LSTM
 - convolution
 - DSSM
 - sequence-to-sequence

- for a range of applications including
 - speech
 - vision
 - text

- and combinations
CNTK is production-ready: State-of-the-art accuracy, efficient, and scales to multi-GPU/multi-server.

- state-of-the-art accuracy on benchmarks and production models
- optimized for GPU
- multi-GPU/multi-server parallel training on production-size corpora
CNTK architecture

- **reader**
 - task-specific deserializer
 - automatic randomization

- **network**
 - network definition
 - CPU/GPU execution engine

- **learner**
 - SGD (momentum, AdaGrad, …)
 - minibatching, packing, padding

Corpus → **reader** → **network** → **learner** → **Model**
how to: top-level configuration

cntk configFile=yourConfig.cntk command="train:eval"

content of yourConfig.cntk:
train = {
 action = "train"
 deviceId = "auto"
 modelPath = "$root$/models/model.dnn"

 reader = { ... }
 BrainScriptNetworkBuilder = { ... }
 SGD = { ... }
}
eval = { ... }
how to: reader

```python
reader = {
    'readerType': "ImageReader",
    'file': "${ConfigDir}/train_map.txt",
    'randomize': "auto",
    'features': { 'width': 224, 'height': 224, 'channels': 3, 'cropRatio': 0.875 }
    'labels': { 'labelDim': 1000 }
}
```

• stock readers for images, speech (HTK), plain text, UCI
 • readers can be combined (e.g. image captioning)
 • custom format: implement IDeserializer

• automatic on-the-fly randomization
 • randomizes data in chunks, then runs rolling window
 • no need to pre-randomize; important for large data sets
how to: network

M = 40 ; N = 512 ; J = 9000 // feat/hid/out dim
x = Input{M} ; y = Input{J} // feat/labels
W1 = Parameter{N, M} ; b1 = Parameter{N}
W2 = Parameter{N, N} ; b2 = Parameter{N}
Wout = Parameter{J, N} ; bout = Parameter{J}

h1 = Sigmoid(W1 * x + b1)
h2 = Sigmoid(W2 * h1 + b2)
P = Softmax(Wout * h2 + bout)
ce = CrossEntropy(y, P)
how to: network

\[
\begin{align*}
M &= 40 ; N = 512 ; J = 9000 \quad \text{// feat/hid/out dim} \\
x &= \text{Input}\{M\} ; y &= \text{Input}\{J\} \quad \text{// feat/labels} \\
\text{Layer} \ (x, \ \text{out}, \ \text{in}, \ \text{act}) &= \{ \quad \text{// reusable block} \\
W &= \text{Parameter}\{\text{out}, \ \text{in}\} ; b &= \text{Parameter}\{\text{out}\} \\
&\quad h = \text{act}(W * x + b) \\
\} . h \\
h_1 &= \text{Layer}(x, \ N, M, \text{Sigmoid}) \\
h_2 &= \text{Layer}(h_1, N, N, \text{Sigmoid}) \\
P &= \text{Layer}(h_2, J, N, \text{Softmax}) \\
ce &= \text{CrossEntropy}(y, P)
\end{align*}
\]
how to: learner

SGD = {
 maxEpochs = 50
 minibatchSize = $mbSizes$
 learningRatesPerSample = 0.007*2:0.0035
 momentumAsTimeConstant = 1100
 AutoAdjust = { ... }
 ParallelTrain = { ... }
}

• various model-update types like momentum, RmsProp, AdaGrad, ...
• learning rate and momentum can be specified in MB-size agnostic way
• auto-adjustment of learning rate (e.g. “newbob”) and minibatch size
• multi-GPU/multi-server
how: typical workflow

• configure reader, network, learner

• train & evaluate, with parallelism:

 mpiexec --np 16 --hosts server1,server2,server3,server4 \
 CNTK configFile=myTask.cntk command=MyTrain:MyTest parallelTrain=true deviceId=auto

• modify models, e.g. for layer-building discriminative pre-training:
 • CNTK configFile=myTask.cntk command=MyTrain1:AddLayer:MyTrain2

• apply model file-to-file:
 • CNTK configFile=myTask.cntk command=MyRun

• use model from code: EvalDll.dll/.so (C++) or EvalWrapper.dll (.Net)
deep dive

• base features:
 • SGD with momentum, AdaGrad, Nesterov, etc.
 • computation network with automatic gradient

• higher-level features:
 • auto-tuning of learning rate and minibatch size
 • memory sharing
 • implicit handling of time
 • minibatching of variable-length sequences
 • data-parallel training

• you can do all this with other toolkits, but must write it yourself
deep dive: variable-length sequences

• minibatches containing sequences of different lengths are automatically packed and padded

• CNTK handles the special cases:
 • PastValue operation correctly resets state and gradient at sequence boundaries
 • non-recurrent operations just pretend there is no padding ("garbage-in/garbage-out")
 • sequence reductions
deep dive: variable-length sequences

- minibatches containing sequences of different lengths are automatically packed and padded

- speed-up is automatic:
deep dive: data-parallel training

• data-parallelism: distribute each minibatch over workers, then aggregate

• challenge: communication cost
 • optimal iff
 \textit{compute and communication time per minibatch is equal} (assuming overlapped processing)

• example: DNN, MB size 1024, 160M model parameters
 • compute per MB: 1/7 second
 • communication per MB: 1/9 second (640M over 6 GB/s)
 • can’t even parallelize to 2 GPUs: communication cost already dominates!

• approach:
 • \textit{communicate less} \rightarrow 1-bit SGD
 • \textit{communicate less often} \rightarrow automatic MB sizing; Block Momentum
deep dive: 1-bit SGD

- quantize **gradients** to but **1 bit per value** with **error feedback**
 - carries over quantization error to next minibatch

\[
G_{ij}^{\text{quant}}(t) = Q(G_{ij}(t) + \Delta_{ij}(t - N))
\]
\[
\Delta_{ij}(t) = G_{ij}(t) - Q^{-1}(G_{ij}^{\text{quant}}(t))
\]

Transferred Gradient (bits/value), smaller is better

1-Bit Stochastic Gradient Descent and its Application to Data-Parallel Distributed Training of Speech DNNs, Interspeech 2014, F. Seide, H. Fu, J. Droppo, G. Li, D. Yu
deep dive: automatic minibatch scaling

• goal: communicate less often
• every now and then try to grow MB size on small subset
 • important: keep contribution per sample and momentum effect constant
 • hence define learning rate and momentum in a MB-size agnostic fashion
• quickly scales up to MB sizes of 3k; runs at up to 100k samples
deep dive: Block Momentum

• very recent, very effective parallelization method
• goal: avoid to communicate after every minibatch
 • run a block of many minibatches without synchronization
 • then exchange and update with “block gradient”
• problem: taking such a large step causes divergence
• approach:
 • only add 1/K-th of the block gradient (K=#workers)
 • and carry over the missing (1-1/K) to the next block update (error residual like 1-bit SGD)
 • same as the common momentum formula

deep dive: data-parallel training

<table>
<thead>
<tr>
<th>Parallel Algorithms</th>
<th>4-GPU</th>
<th>8-GPU</th>
<th>16-GPU</th>
<th>32-GPU</th>
<th>64-GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1bit</td>
<td>10.79</td>
<td>10.59</td>
<td>11.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMUF</td>
<td>10.82</td>
<td>10.82</td>
<td>10.85</td>
<td>10.92</td>
<td>11.08</td>
</tr>
</tbody>
</table>

Table 2: WERs (%) of parallel training for LSTMs

[Yongqiang Wang, IPG; internal communication]
• CNTK is Microsoft’s open-source, cross-platform toolkit for learning and evaluating deep neural networks.
 • Linux, Windows, docker, .Net
 • growing use and contribution by various product teams

• CNTK expresses (nearly) arbitrary neural networks by composing simple building blocks into complex computational networks, supporting relevant network types and applications.
 • automatic differentiation, deferred computation, optimized execution and memory use
 • powerful description language, composability
 • implicit time; efficient static and recurrent NN training through batching
 • data parallelization, GPUs & servers: 1-bit SGD, Block Momentum
 • feed-forward DNN, RNN, LSTM, convolution, DSSM; speech, vision, text

• CNTK is production-ready: State-of-the-art accuracy, efficient, and scales to multi-GPU/multi-server.
Thanks!

taifengw@microsoft.com

CNTK有关材料
http://www.cntk.ai
https://github.com/microsoft/cntk/wiki